
An Efficient Ant Colony System for Edge Detection in Image Processing

Yara Khaluf1 and Syam Gullipalli2

University of Paderborn, Paderborn, Germany
1yara.khaluf@uni-paderborn.de
2syam@mail.uni-paderborn.de

Abstract

Edge detection is a fundamental procedure in image process-
ing, machine vision, and computer vision. Its application area
ranges from astronomy to medicine in which isolating the ob-
jects of interest in the image is of a significant importance.
However, performing edge detection is a non-trivial task for
which a large number of techniques have been proposed to
solve it. This paper investigates the use of Ant Colony Opti-
mization — a prominent set of optimization heuristics — to
solve the edge detection problem. We propose two modified
versions of the algorithm Ant Colony System (ACS) for an
efficient and a noise-free edge detection.

1 Introduction
Edge detection is a fundamental process in analyzing im-
ages. It attempts to find points at which the image brightness
has discontinuities. These discontinuities allow changes in
pixels intensities which may define the boundaries of an ob-
ject. Applying edge detection may reduce significantly the
amount of data to be processed by filtering out the infor-
mation that is less relevant and preserving the important
structural properties of an image. Therefore, edge detec-
tion is involved as an essential stage in a wide range of ap-
plications. Examples include medicine applications, pattern
recognition, machine vision, image analysis, automotive ap-
plications, and others. Furthermore, edge detection should
be performed in a reliable way as the validation and the ef-
ficient completion of the following stages in the image pro-
cessing rely on it. At the same time, obtaining ideal edges
from real life images with a moderate complexity is a chal-
lenging task.
In general, complex mathematical functions such as the first
and the second order derivatives of the image are used for
performing edge detection. Moreover, smoothing (filtering)
functions are required to remove the noise obtained from
the detection process. Applying such techniques increases
the complexity of the detecting process and they may fail in
maximizing the number of detected edges. Ant Colony Op-
timization Colorni et al. (1991) is a set of heuristics for op-
timization that has proven its efficiency in a large number of
areas including scheduling problems Martens et al. (2007);

Blum (2005), vehicle routing problem Toth and Vigo (2002);
Secomandi (2000), assignment problems Stützle and Hoos
(2000), and others. ACO is inspired by the foraging behavior
of ants in which ants leave pheromone trails on the ground
while searching for food in order to guid the search of other
ants to the best food sources. There are several ACO al-
gorithms presented in the literature, see Dorigo and Stützle
(2004) and Christian (2005). They vary either in the way
they select their next choice in the solution space or in their
way of updating the pheromone trails. In this paper, we use
the particular variant Ant Colony System (ACS) Dorigo and
Gambardella (1997) to solve the problem of edge detection.
ACS applies two rules for the pheromone update: local and
global, in order to achieve a better search of the problem
space. Additionally, its probabilistic decision rule focuses
on both exploring the solution space and exploiting previ-
ous solutions. We propose two modified algorithms of ACS,
which are developed to obtain an efficient edge detection
with a minimized complexity.
The rest of the paper is organized as follows: section 2 re-
views a list of related works in the field of edge detection.
Section 3 illustrates the Ant Colony System used in solv-
ing the edge detection problem. In Section 4 we present the
first algorithm (FACS) proposed to solve the edge detection
based on ACS. Experimental results of FACS are reported in
Section 5. The Extended FACS (the second algorithm pro-
posed) is presented in Section 6 and its experimental results
are reported in Section 7. A comparison between the perfor-
mance of the algorithms is given in Section 8 and the paper
is concluded in section 9.

2 Related Work
Several approaches have been introduced in the literature
for edge detection and the solutions proposed were mainly
based on complex mathematical techniques. Two of the
wide-used methodologies are the gradient and the Laplacian.
In the gradient, detecting edges is performed by searching
for the maximum and minimum in the first derivative of the
image. Whereas in the Laplacian, it is done by searching
for the zero crossings in the second derivative of the im-

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

DOI: http://dx.doi.org/10.7551/978-0-262-33027-5-ch071

age Ziou and Tabbone (1998). One of the prominent al-
gorithms that has applied the first order derivative for edge
detection is the Canny’s algorithm Canny (1986). This al-
gorithm has introduced an edge detection operator using the
calculus of variations, Gelfand et al. (2000). Canny’s al-
gorithm applies a set of mathematical functions for detect-
ing the edges and requires image filtering for removing the
noise. Despite being one of the most applied edge detec-
tion techniques, Canny’s algorithms is associated with a set
of preconditions for enabling its application in addition to
the high complexity associated with the execution of this al-
gorithm. Prewitt has introduced in Prewitt (1970) another
edge detection operator that uses the first order derivative of
the image by computing an approximation of the gradient of
the image intensity function. Another edge detection oper-
ation that computes an approximation of the gradient of an
image through discrete differentiation is the one introduced
by Roberts cross in Davis (1975). The main disadvantage of
the first order derivative operators is their sensitivity to the
noise while detecting both the edges and their orientations.
On the other hand, detecting the image edges using the sec-
ond order derivative of the image was first presented in Har-
alick (1984). This technique captures the rate of change in
the intensity gradient and looks for the zero crossing of the
second derivative of the image. The Marr-Hildreth operator
Marr and Hildreth (1980) is a well-known operator that uses
the second order derivative by convolving the image with
the Laplacian of the Gaussian function. The Marr-Hildreth
operator suffers from the possibility of generating responses
that do not correspond to edges and are referred to as false
edges. The second order derivative operators suffer, as the
first order derivative ones, from their sensitivity to noise.
Therefore using filtering techniques becomes a necessity for
both types of operators, which increases the complexity of
the edge detection process.

Different from the complex mathematical approaches used
for the sake of edge detection, Ant Colony Optimization has
offered efficient heuristics to deal with the problem. For ex-
ample, the authors in Rezaee (2008) have investigated the
use of a particular ACO variant, referred to as the ant sys-
tem (AS) to detect edges. In Nezamabadi-pour et al. (2006)
a modified ant colony system has been presented to solve
the edge detection problem. The authors have derived an
experimental relationship between the size of the image and
the algorithm parameters. The quality of the detection was
further improved in the ant colony algorithm presented in
Tian et al. (2008). Another work in which ant colony sys-
tem was involved in detecting edges was in Zhuang (2004),
in which a perceptual graph was used to represent the pro-
cessed image. A hybrid edge detection using Canny edge
detector and an ant colony algorithm was presented in Man-
ish et al. (2013). Even quantum computing was proposed
to be used in combination with ant colony system to de-
tect edges in Jian et al. (2012). In this work, the authors

have applied matrix multiplications and complex mathemat-
ical functions such as trigonometric functions in order to de-
tect edges. Many experiments have proven that Ant Colony
System (ACS) — a variant of ant colony algorithms — dom-
inates Ant system (AS) for edge detection problems, as we
can see in Baterina and Oppus (2010). In this work, the au-
thors investigated the ACS algorithm for solving edge detec-
tion problems. However, noise filtering was still a necessary
step for obtaining a feasible result.
The work presented in this paper proposes the use of two
modified versions of the ACS algorithm for solving edge de-
tection problems. Moreover, it offers a comparison between
the performance of the proposed algorithms and the perfor-
mance of the ACS system presented in Baterina and Oppus
(2010) (without noise filtering). A remarkable improvement,
in terms of both quality and complexity, is achieved.

3 Ant Colony System (ACS)
Ant colony algorithms are population based meta-heuristics
which share two main components: the probabilistic deci-
sion rule and the pheromone update rule. The probabilistic
decision rule is the rule used by each ant to decide concern-
ing its next step in the solution space. This decision is per-
formed probabilistically based on both the problem heuris-
tic information and the exploitation of the experiences of
other ants that have explored the space before. Updating
the pheromone trails includes two operations: pheromone
evaporation to forget about the previous bad solutions and
pheromone deposit to reinforce the good solutions. The
pheromone trails, left by the ants are exploited by other ants
to improve the quality of their search.
Ant Colony System (ACS) is a particular variant of the ant
colony algorithms which has its own probabilistic decision
and pheromone update rules. The decision rule applied in
ACS exploits, with a particular probability, the search expe-
rience accumulated by other ants. Thus, the probability that
the ant moves to position j is defined as in the following:

j =

⇢
arg maxj2Nk

i
(⌧↵ij · ⌘�ij) if q q0 (Exploitation)

J otherwise (Exploration)
(1)

where q is a random variable uniformly distributed in [0, 1],
q0 (0 q0 1) is an algorithm parameter, Nk

i is the set of
unvisited neighbors, and J is defined using the probabilistic
decision rule of the ant colony algorithms, given by:

p
(k)
ij (t) =

[⌧ij(t)]
↵[⌘ij]

�

P
l2Nk

i
[⌧il(t)]↵[⌘il]�

(2)

where ⌧ij is the pheromone value deposited on the edge (i,j).
⌘ij is the heuristic information assigned to the edge (i,j). ↵
and � are two parameters that determine the relative influ-
ence of both the pheromone trails and the heuristic informa-
tion.

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

ACS applies two rules for updating the pheromone trails: the
global update and the local update. The global pheromone
update is applied after each iteration by only one ant (the
best-so-far), as in the following:

⌧ij (1� ⇢)⌧ij + ⇢�⌧ bs
ij , 8(i, j) 2 T bs (3)

where ⇢ is the evaporation parameter and �⌧ bs
ij is the amount

of pheromone deposited by the best-so-far ant.
One of the main difference between ACS and other ant
colony algorithms is the use of local pheromone. The pur-
pose of using this pheromone is to reduce the probability for
ants to select an edge that was selected before. The updating
of local pheromone is done by each ant immediately after
crossing a particular edge during the phase of the solution
construction. The rule for updating the local pheromone is
given by:

⌧ij (1� ⇠)⌧ij + ⇠⌧0 (4)

where ⇠, 0 < ⇠ < 1, and ⌧0 are two parameters of the algo-
rithm.

4 Focused ACS Algorithm for Edge
Detection (FACS)

For enabling the application of any ant colony algorithm on
edge detection problems, the image should be transformed
into a graph. This graph is generated by introducing a ma-
trix Iw⇥h that represents the intensity at each pixel of the
image, as in Figure 1(a). Each pixel is considered as a node
and is connected to its neighbors (horizontal, vertical, and
diagonal) to form the graph edges.

(0, 0) (0, 1)

(1, 1)(1, 0)

(0, 2)

(1, 2)

(2, 0) (2, 1) (2, 2)

(w-1, 0) (w-1, 1) (w-1, 2)

(0, h-1)

(1, h-1)

(2, h-1)

(w-1, h-1)

(a) Graph representation of w⇥h
image.

(i-1, j-1) (i-1, j) (i-1, j+1)

(i, j+1)(i, j)(i, j-1)

(i+1, j-1) (i+1, j) (i+1, j+1)

(b) Feasible neighbor-
hood of pixel (i, j).

Figure 1 – Graph representation of the edge detection prob-
lem.

As illustrated in Figure 1(b), the neighborhood of each pixel
is defined so that each ant can move in 8 directions if ap-
plicable. Repeated visits to the same node are restricted by
maintaining a piece of memory by each ant. However, it
is allowed in deadlock situations. In general, the heuristic
information defined for most of the problems, which were
solved with ant colony algorithms, is encoded on the edges

of the graph that represents the problem. Differently, for
edge detection problems, the heuristic information is en-
coded at the nodes of the graph (the pixels) and is defined
based on the intensity value of the pixel, as in the following:

⌘ij =
Vc(Iij)

Vmax
(5)

Iij is the intensity of pixel (i, j). Vmax is the maximum in-
tensity variation in the given image and Vc(Iij) is the func-
tion of intensity variation around the pixel (i, j) which is
given by:

Vc(I(i,j)) = |I(i�1,j�1) � I(i+1,j+1)| + |I(i,j�1) � I(i,j+1)|
+ |I(i+1,j�1) � I(i�1,j+1)| + |I(i+1,j) � I(i�1,j)|

(6)

Consequently, the pixel with a higher intensity variation (its
heuristic information value is higher) has a higher probabil-
ity of being selected in the next step of the ant tour.
In ACS, the global pheromone update is applied only by the
best-so-far ant. However for the edge detection problem, we
modify this rule to allow all ants to update the pheromone
trails at the end of each iteration. Since all the solutions
found by ants represent potential edges in the image. There-
fore, Equation Eq.(3) becomes:

⌧ij (1� ⇢)⌧ij + ⇢�⌧k
ij (7)

If ant k has visited pixel (i, j), then �⌧k
ij is computed as

the average of the heuristic values associated with pixel (i,
j). Otherwise, it is set to zero. Local pheromone update is
applied by the ants after each move as defined in Eq.(4).
The ant colony algorithms presented in the literature for
solving edge detection problem, such as in Baterina and Op-
pus (2010), require mostly a post-processing step of thresh-
olding and filtering for removing the noise. Such techniques
remove often edges apart from the noise and increases sig-
nificantly the complexity of the detection process. In this pa-
per, we propose an efficient algorithm (FACS) to overcome
loosing the details of edges on resultant images and to re-
duce the complexity of the process. The core idea of FACS
is to perform a focused distribution of the initial positions of
ants on the image graph. The way the ants are places initially
on the image graph affects significantly both the quality of
the results and the complexity of the detection process. Most
of the used ant colony algorithms apply a random distribu-
tion of the initial positions of ants. One of the main disad-
vantages of the random distribution is the noise emerges in
the resultant images. Since the heuristic matrix of the im-
age could be computed offline before starting the algorithm,
FACS proposes to guide all ants to start at selected positions,
at which the values of the heuristic information are at their
maximum. FACS computes first the heuristic information
matrix associated with the image graph. Afterwards, this
heuristic information is ranked and the initial positions are

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

selected based on the obtained ranking. This leads to con-
centrate the search by making it starts at positions related to
the best solutions. Consequently, this will reduce the com-
plexity of the search algorithm and increase the quality of
the results. Figure 2 shows two standard test images (lena
and mandril), in addition to one image of simple shapes that
are drawn with an increasing intensity in order to clarify the
applicability of the proposed algorithms. The Figure shows
the initial positions of ants. In Figure 2(a), (c), and (e) the
positions are generated randomly using a uniform distribu-
tion as done by most of the ant colony algorithms. Whereas,
in Figure 2(b), (d), and (f) the positions are generated based
on the ranked heuristic information, as described above.

(a) Ants are ini-
tialized at ran-
dom positions

(b) Ants are
initialized at
selected positions

(c) Ants are ini-
tialized at ran-
dom positions

(d) Ants are
initialized at
selected positions

(e) Ants are ini-
tialized at ran-
dom positions

(f) Ants are
initialized at
selected positions

Figure 2 – Initial positions of ants.

The pseudocode of the FACS algorithm is shown in Algo-
rithm 1, where initially K artificial ants are placed at partic-
ular positions that are selected based on the ranked heuristic
information. The algorithm runs for N iterations and in each
iteration each ant constructs its specific solution through
choosing its steps probabilistically using Eq.(1) and Eq.(2).
After that, the ant updates the local pheromone trails using
Eq.(4). At the end of each iteration the pheromone trails are
updated globally using the solutions found by all ants as in
Eq.(7).

Algorithm 1: Pseudocode of FACS for edge detection
in images.

1 Initialization at focused positions;

8
<
:

Compute the heuristic
information
Rank the heuristic
information
Select initial positions

2 forall the iterations n in 1:N do
3 forall the construction steps l in 1:L do
4 forall the ants k in 1:K do
5 Choose and move to the next pixel;
6 Update local pheromone;

7 Update global pheromone values on visited pixels;

5 Experimental Results with FACS
We perform a set of experiments on the images shown in
Figure 2 using two edge detection algorithms: the one pre-
sented in Baterina and Oppus (2010) and the FACS algo-
rithm. The results obtained from applying the Baterina and
Oppus (2010) algorithm are reported without performing
any thresholding or filtering in order to compare them with
the results obtained using FACS, which does not undergo
any filtering process.
We have performed a parameter sensitivity analysis for
FACS, in which we have varied the parameters over
the following ranges: q0 2 {0.1, 0.3, 0.5, 1}, ↵,� 2
{0.1, 0.3, 0.5, 0.7, 1, 2, 5}, ⌧0 2 {0.5, 1, 10, 100}, and K 2
{128, 256, 512, 1024}. We have noticed that while chang-
ing the values of � or q0 doesn’t have a significant in-
fluence on the results, high values of ↵ or ⌧0 allow
to preserve the edges found in pervious iterations. On
the other hand, the time it takes to find good result is
a tradeoff between the number of ants and the number
of iterations. ⇢ and ⇠ were tested pairwise (⇢, ⇠) 2
{(0.01, 0.01), (0.1, 0.05), (1, 0.01), (1, 0.1), (1, 1)} and ex-
periments showed that better results were obtained for a
high ⇢ and a relatively low ⇠. For the implementation, we
adopt the best parameter settings found in Baterina and Op-
pus (2010) and those are given in the following:

Initial pheromone value (⌧0) = 0.1
Number of ants (K) = 512
Number of iterations (N) = 10
Number of constructions (L) = 40
Parameter influencing pheromone trail (↵) = 1
Parameter influencing heuristic information (�) = 1
Pheromone decay coefficient (⇠) = 0.05
Pheromone evaporation coefficient (⇢) = 0.1
Degree of exploration (q0) = 0.7

We have K = 512 ants initialized on K positions that are
selected in a decreasing order of the heuristic values. Those

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

ants are initialized randomly in the algorithm presented in
Baterina and Oppus (2010). Figures 3 and 4 show the binary
images resulted over different iterations of both ACS and
FACS algorithms, where neither thresholding nor filtering
techniques were applied. The results show that all the edges
found by ants in FACS are potential edges and there was a
significant improvement in reducing the detection complex-
ity and in the quality of the results (no noise) compared to
the ACS algorithm presented in Baterina and Oppus (2010)
(without filtering). After a particular number of iterations,
the results from FACS may stop to improve (stagnation) as
we can see in Figure 3 for the iterations 8 and 10.

Iteration 1 Iteration 1

Iteration 3 Iteration 3

Iteration 6 Iteration 6

Iteration 8 Iteration 8

Iteration 10 Iteration 10

Figure 3 – The binary images of the image ”Lena” obtained
over different iterations for both Baterina and Oppus (2010)
algorithm and FACS.

Iteration 1 Iteration 1

Iteration 3 Iteration 3

Iteration 6 Iteration 6

Iteration 8 Iteration 8

Iteration 10 Iteration 10

Figure 4 – The binary images of the image ”Mandril” ob-
tained over different iterations for both Baterina and Oppus
(2010) algorithm and FACS.

6 The Extended FACS
Initializing ants at the best heuristic positions has shown a
significant improvement over methods that initialize ants at
random positions. However, after certain number of itera-
tions the results may stagnate. The reason for this potential
stagnation is associated with the reduced probability for the
ants to detect edges in the next iterations, while the initial
positions selected for those ants did not lead to detect edges
in pervious iterations. In cases where the initial positions
selected for the ants are adequate for detecting the edges in
the image, FACS performs at its optimal. However when
it is not the case, potential edges may not be found by the
solutions generated over the different iterations.
In order to solve this stagnation problem, we introduce the
Extended FACS algorithm, in which the positions of the ants

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

might be re-initialized after each iteration. The algorithm
works as in the following: After the global pheromone is
deposited at the end of the i-th iteration, we compute the av-
erage amount of pheromone deposited by all ants and which
is denoted by ⌧avg(i). The ants are ranked based on the
quality of their solutions in the i-th iteration using the av-
erage ⌧avg(i). Ants which have deposited a larger amount
of pheromone than ⌧avg(i) will start from the positions (pix-
els) they have finished at in the latest iteration. Whereas,
ants which have deposited less pheromone than ⌧avg(i) are
place on new initial positions in the next iteration i + 1. The
new positions assigned to those ants are selected based on
the heuristic information computed offline. Thus, They will
be placed at the pixels with the next highest heuristic values.
The memories of the ants which are placed at new positions
are reset to allow them to re-visit the pixels they may have
visited in the previous iterations. This extension allows the
ants which have performed above the average to continue
the search they have started and to detect connected edges.
Whereas, the ants which have performed below the average,
they have most likely detect no connected edges. Therefore,
they should be placed at new positions for increasing their
probability of finding new potential edges. The pseudocode
of the Extended FACS algorithm is shown in Algorithm 2.

Algorithm 2: Pseudocode of the Extended FACS for
edge detection in images.

1 Initialization at focused positions;

8
<
:

Compute the heuristic
information
Rank the heuristic
information
Select initial positions

2 forall the iterations n in 1:N do
3 forall the construction steps l in 1:L do
4 forall the ants k in 1:K do
5 Choose and move to the next pixel;
6 Update local pheromone;

7 Update global pheromone values on visited pixels;

8 Assign low ranked ants
new initial positions;

8
<
:

Compute the average pheromone

Rank the ants

Re-assign initial positions

7 Experimental Results with the Extended
FACS

In this section, we apply the Extended FACS to validate the
algorithm performance in terms of the solution quality and
the ability to deal with the stagnation problem. We adopt
the same parameter settings as in Section 5. First, Figure
5 shows the results of applying all of ACS, FACS and the
extended FACS on the shapes image. It depicts the results

obtained after several iterations of each of the algorithms. In
Figure 5(a), we can notice the noise generated when using
ASC without filtering. On the contrary, we obtain free-of-
noise binary images, when using any of FACS or the ex-
tended FACS algorithms, as we can see in Figures 5(b) and
(c). Because of initializing the ants at the same positions
with the highest heuristics (highest intensity), the ants used
by FACS were able to detect edges only on the circle and the
star shapes. This is not the case when applying the extended
FACS, in which ants are re-intialized at new positions when
their previous positions were not promising, see Figure 5(c).
Additionally, having a larger number of ants will lead to de-
crease the number of iterations required by both FACS and
the extended FACS to obtained the optimal results and to
allow FACS to detect more edges (on the square and the tri-
angle).

(a) Iteration 10 (b) Iteration 10 (c) Iteration 23

Figure 5 – The binary images of the shapes image obtained
over different iterations of Baterina and Oppus (2010), FACS,
and the extended FACS.

The results for the lena and the mandril images that are ob-
tained by both FACS and the extended FACS are shown in
Figure 6 and Figure 7. Since the results generated by both
FACS and the Extended FACS are noise-free, we can com-
bine the binary images obtained over several iterations in
order to achieve a better edge detection.

8 Comparisons and Analysis
In this section, we perform a comparison between the three
algorithms: the ACS system presented in Baterina and Op-
pus (2010) (without filtering), the FACS, and the Extended
FACS. We perform our comparison from two points of view:
the amount of pheromone deposited by ants over the differ-
ent iterations (a measure of quality) and the time required by
the algorithm over the different iterations (a measure of com-
plexity). FACS deposits the highest amount of pheromone
as we can see in Figure 8(a). This is due to the fact that
FACS initiates the ants at the positions of highest heuristic
values, thus, a large number of intersections exists between
the solutions found by the different ants. Therefore, the se-
lected pixels in the previous iterations have a higher proba-
bility to be re-selected and assigned additional amounts of
pheromone. The amount of pheromone assigned by the Ex-
tended FACS is, in general, less than the amount assigned
by FACS since ants could be placed at different initial po-
sitions. In cases when FACS is able to generate different

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

Iteration 1 Iteration 1

Iteration 3 Iteration 3

Iteration 6 Iteration 6

Iteration 8 Iteration 8

Iteration 10 Iteration 10

Figure 6 – The binary images of the image ”Lena” obtained
over different iterations for both FACS and the Extended
FACS.

solutions over the considered number of iterations, the aver-
age of the deposited pheromone becomes similar to the one
of the Extended FACS as we can see in Figure 8(b). The
average amount of deposited pheromone is at its minimum
when the ants are initialized at random positions and that is
what we can see in both Figure 8(a) and (b).
The second criteria we use to compare the three algorithms
is the time required by the algorithm to perform the edge de-
tection over a specific number of iterations. This represents a
measure of the algorithm complexity. From Figures 9(a) and
(b), we can notice that FACS and the Extended FACS per-
form significantly better than the ACS presented in Baterina
and Oppus (2010) in terms of the required time. The reason
behind is that when using FACS or the Extended FACS, the
probability for ants to re-visit positions is higher. Hence, the

Iteration 1 Iteration 1

Iteration 3 Iteration 3

Iteration 6 Iteration 6

Iteration 8 Iteration 8

Iteration 10 Iteration 10

Figure 7 – The binary images of the image ”Mandril” ob-
tained over different iterations for both FACS and the Ex-
tended FACS.

(a) The ”Lena” image. (b) The ”Mandril” image.

Figure 8 – The average amount of pheromone deposited by
ants over 10 iterations.

update of the global pheromone deals with less number of
positions (pixels), which leads to a faster update.
In summary, FACS and the Extended FACS offer solutions

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

with a better quality (higher pheromone concentration) and
within a significantly shorter time (lower complexity) than
by traditional ACS. Moreover, they don’t need any addi-
tional thresholding or filtering processes.

(a) The ”Lena” image. (b) The ”Mandril” image.

Figure 9 – The time required for the detection of image edges
over 10 iterations.

9 Conclusion
In this paper, we have presented an efficient Ant Colony
System (ACS) for solving the fundamental problem of edge
detection which is required in a large number of applica-
tions. Two variants of the algorithm were presented: the
FACS, in which the ants are initialized at positions selected
based on the ranked heuristic information, and the Extended
FACS in which the ants are ranked to avoid stagnation prob-
lems and generate eventually better solutions by placing the
low-ranked ants at new initial positions. The proposed al-
gorithms were compared with the ACS system presented in
Baterina and Oppus (2010) without filtering.
The two algorithms proposed in this paper have outper-
formed the traditional ACS (without filtering) and higher
quality solutions were obtained in significantly shorter time,
without the need for addition noise-filtering processes.

References
Baterina, A. and Oppus, C. (2010). Ant colony optimization for im-

age edge detection. In Proceedings of the 9th WSEAS Inter-
national Conference on Signal Processing, Robotics and Au-
tomation, ISPRA’10, Wisconsin, USA. World Scientific and
Engineering Academy and Society (WSEAS).

Blum, C. (2005). Beam-aco–hybridizing ant colony optimization
with beam search: An application to open shop scheduling.
Computers & Operations Research, 32(6):1565–1591.

Canny, J. (1986). A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 8(6):679–698.

Christian, B. (2005). Ant colony optimization: Introduction and
recent trends. Physics of Life Reviews, 2(4):353–373.

Colorni, A., Dorigo, M., and Maniezzo, V. (1991). Distributed
optimization by ant colonies. In Proceedings of the first Eu-
ropean conference on artificial life, volume 142, pages 134–
142, Paris, France.

Davis, L. (1975). A survey of edge detection techniques. Computer
graphics and image processing, 4(3):248–270.

Dorigo, M. and Gambardella, L. (1997). Ant colony system:
a cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computation,
1(1):53–66.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. Brad-
ford Company, MA, USA.

Gelfand, I., Fomin, S., and Silverman, R. (2000). Calculus of Vari-
ations. Dover Books on Mathematics. Dover Publications.

Haralick, R. (1984). Digital step edges from zero crossing of sec-
ond directional derivatives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-6(1):58–68.

Jian, Z., Jiliu, Z., Kun, H., and Huanzhou, L. (2012). Image edge
detection using quantum ant colony optimization. Interna-
tional Journal of Digital Content Technology and its Appli-
cations(JDCTA), 6(11):402–405.

Manish, T., Murugan, D., and Ganesh, K. (2013). Hybrid edge
detection using canny and ant colony optimization. Commu-
nications in Information Science and Management Engineer-
ing, 3(8):402–405.

Marr, D. and Hildreth, E. (1980). Theory of edge detection. Pro-
ceedings of the Royal Society of London. Series B. Biological
Sciences, 207(1167):187–217.

Martens, D., Backer, M. D., Haesen, R., Vanthienen, J., Snoeck,
M., and Baesens, B. (2007). Classification with ant colony
optimization. IEEE Transactions on Evolutionary Computa-
tion, 11(5):651–665.

Nezamabadi-pour, H., Saryazdi, S., and Rashedi, E. (2006). Edge
detection using ant algorithms. Soft Computing, 10(7):623–
628.

Prewitt, J. (1970). Object enhancement and extraction. Picture
processing and Psychopictorics, 10(1):15–19.

Rezaee, A. (2008). Extracting edge of images with ant colony.
Journal of Electrical Engineering, 59(1):57–59.

Secomandi, N. (2000). Comparing neuro-dynamic programming
algorithms for the vehicle routing problem with stochastic
demands. Computers & Operations Research, 27(11):1201–
1225.

Stützle, T. and Hoos, H. (2000). Max–min ant system. Future
generation computer systems, 16(8):889–914.

Tian, J., Yu, W., and Xie, S. (2008). An ant colony optimization
algorithm for image edge detection. In IEEE Congress on
Evolutionary Computation, pages 751–756.

Toth, P. and Vigo, D. (2002). Models, relaxations and exact ap-
proaches for the capacitated vehicle routing problem. Dis-
crete Applied Mathematics, 123(1):487–512.

Zhuang, X. (2004). Edge feature extraction in digital images with
the ant colony system. In IEEE International Conference
on Computational Intelligence for Measurement Systems and
Applications, pages 133–136. IEEE.

Ziou, D. and Tabbone, S. (1998). Edge detection techniques-an
overview. Pattern Recognition and Image Analysis, 8:537–
559.

Yara Khaluf, Syam Gullipalli (2015) An Efficient Ant Colony System for Edge Detection in Image Processing. Proceedings of
the European Conference on Artificial Life 2015, pp. 398-405

