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Abstract Swarm robotics is a branch of collective robotics
systems that offers a set of remarkable advantages over other
systems. The global behavior of swarm systems emerges
from the local rules implemented at the individual level.
Therefore, characterizing a global performance obtained at
the swarm level is one of the main challenges, especially
under complex dynamics such as spatial interferences. In
this paper, we exploit the central limit theorem to ana-
lyze and characterize the swarm performance over long-term
deadlines. The developed model is verified on two tasks: a
foraging task and an object filtering task.

Keywords Swarm robotics · Time-constrained tasks ·
Central limit theorem

1 Introduction

Swarm robotics is a novel approach of coordinating a large
number of robots, in which the global behavior emerges
from the local rules implemented on the individual level.
Swarm robotics offers a set of advantages over other robotics
systems including: fault-tolerance, scalability and flexibility
which allow them to represent a promising solution for a
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wide spectrum of applications. Spatial interferences between
robots affect significantly the swarm performance which is
defined as the amount of work accomplished by the indi-
viduals during a particular time unit. The influence of the
spatial interferences is observed on both the performance of
the single robot and the global performance of the swarm.
A well-known example is the foraging task (Labella et al.
2006; Campo and Dorigo 2007), in which robots are used to
retrieve objects scattered over the arena back to a particular
area referred to as the nest. As noted in Lerman and Galstyan
(2002) andOstergaard et al. (2001), increase in the number of
foraging robots decreases the performance of a single robot,
i.e., the number of objects retrieved by the robot per time
unit. Swarm performance is affected differently from the sin-
gle robot performance, as increase in the number of robots
increases the swarm performance until an optimal perfor-
mance is reached. Afterwards, the swarm performance starts
to decrease influenced by the interferences between robots.
Although the influence of spatial interferences has been stud-
ied on a limited number of swarm scenarios,mainly foraging,
the observations were not surprising and could be interpreted
as in the following: increase in the number of robots increases
the concurrence between robots and, consequently, the time
required by a single robot to accomplish the individual parts.
This decreases in turn, the number of parts accomplished
within a specific period of time. At the swarm level, the
obtained performance keeps increasing as long as the benefit
of parallelizing thework is larger than the time penalty paid in
escaping the interferences between robots.When robotswork
in large numbers such as robot swarms they become prone
to intensive spatial interferences that are caused by the high
density of the system. Those interferences represent com-
plex dynamics that can lead to have an unknown distribution
of the swarm performance making its analysis a non-trivial
process. Moreover, as in other robotic systems, tasks exe-
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cuted by swarm robotics have mostly long-term durations.
Therefore, developing a technique that analyzes the swarm
performance for long-term tasks and under the influence of
spatial interferences is of a significant importance. However,
performing this analysis by running real experiments or com-
puter simulations is a time and resource consuming solution.
Therefore, alternative tools are required.

This paper is based on the work presented in Khaluf et al.
(2013), in which we have investigated the use of the cen-
tral limit theorem (CLT)1 (CLT) for analyzing the long-term
performance of a robot swarm. We are focusing on a partic-
ular set of robotic tasks, in which the swarm performance
can be defined as the sum of a large number of individual or
group contributions. This allows us tomake use of the CLT in
developing our model. This paper extends the previous work
and verifies the probabilistic model on a foraging task and
an object filtering task (Vardy 2012). The rest of the paper
is organized as follows: Sect. 2 lists a set of related works.
Section 3 formulates the problem of interest. In Sect. 4, the
central limited theorem is introduced in addition to themodel
proposed for characterizing the swarm performance. Sec-
tions 5 and 6 verify the developed model on a foraging task
and an object filtering task, respectively. The paper is con-
cluded in Sect. 7.

2 Related work

The performance of a swarm robotics system is influenced
by the interferences among the working robots (Goldberg
and Matarić 2000). Most of the studies performed in this
field were focusing on the change in the amount of the work
accomplished within a particular time unit, when different
swarm sizes are used. The studies were mostly performed on
the well-known foraging task and the conclusions were sim-
ilar and state that increasing the number of robots decreases
the performance of individual robots.Whereas for the swarm
performance, increasing the number of robots increases the
swarm performance up to some point after which the perfor-
mance starts to decrease influenced by negative effect of the
interferences between robots. Several studies were pursued
to improve the swarm performance by reducing the density
of spatial interferences between robots. In Goldberg (2001),
different types of interferences for multi-robot systems have
been defined and the work has presented the interactions
among robots working together in a common area as the
main type of robot interactions. The authors have proposed
two techniques to arbitrate the impact of interactions. First,

1 The central limit theorem, in its classic version, states that themean of
a sufficiently large set of independent and identically distributed random
variables each with a finite mean and variance tends to be distributed
normally (Rice 2001).

by making sure that robots are working in different areas and
second, by scheduling the occupation of shared areas. The
first proposal was further investigated under the term bucket-
brigade as in Shell and Mataric (2006); Vaughan (2008);
Ostergaard et al. (2001), in addition to Lein and Vaughan
(2008), in which the approach was extended to consider
adaptive working areas. Task partitioning represents another
technique, which is used to improve the swarm performance
under spatial interferences. In Pini et al. (2009), a task parti-
tioning techniquewas proposed, inwhich the shared areawas
divided into two areas and the robots select their area using
a threshold mechanism. The authors of Pini et al. (2011)
have studied the role of task partitioning in reducing the
concurrent access to the nest area in a harvesting task. Dif-
ferently from the works listed above, the focus in this paper
is not on decreasing the impact of spatial interferences on
the swarm performance; however, it is on characterizing this
performance under the influence of the complex dynamics
associated with the spatial interferences.

Analyzing swarm performance by means of real experi-
ments is not always possible and it is an expensive solution
in terms of both time and hardware. Computer simulations,
on the other hand, are very time consuming, especially
when tasks are associated with long-term deadlines. In such
cases, mathematical modeling represents one of the best
approaches. In Lerman and Galstyan (2002), a mathemat-
ical model has been introduced, in which the authors tried
to quantify the effect of spatial interferences on both the
single robot and the swarm performances. A list of various
mathematical models which can be applied in swarm sys-
tems is reported inMuniganti and Pujol (2010).Most of these
mathematical studies focus on specific swarm scenarios such
as foraging in Liu et al. (2007) or collaborative distributed
manipulation in Martinoli et al. (2004). To our best knowl-
edge, no study was considering the mathematical analysis
of the collective swarm performance within specific dead-
lines. In addition, the probability analysis of swarm robotics
performance was not considered intensively and only few
studies were performed in that field such as in Lerman et al.
(2005). The CLT (Rice 2001) is a theorem that is applied
widely in several fields related to measurement approxima-
tions, hypothesis testing, canceling of communication noise,
and statistics (Jacod et al. 2010; Dunsmuir 1979). Neverthe-
less, it is not investigated yet within the context of swarm
robotics. This theorem is exploited in this paper to charac-
terize probabilistically the performance of swarm robotics
systems over long-term deadlines and under the influence of
complex dynamics.

3 Problem formulation

We focus on constructive robotics tasks. Constructive tasks
are tasks in which the total swarm contribution is the sum
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of the robots’ individual contributions. We assume that the
tasks can be executed additively and that each robot is able
to execute an individual part of the task. Consequently, the
swarm performance is the accumulative performance of the
contributions of the individual robots. Each of the considered
tasks can be characterized by its long-term deadline, which
refers to the time point after which the robots should stop
work on the task.

In swarm robotics systems, the contribution of a single
robot is a random variable which can be discrete, as well as
continuous based on the type of the task. For example, push-
ing a box is a task in which the performance is a continuous
random variable that represents the distance the box travels
within a particular time unit. However, in a foraging task the
performance represents the number of objects retrieved back
to the nest during the time unit and therefore it belongs to
the discrete space. In this paper, we focus on tasks in which
the performance is associated with a discrete random vari-
able and the task consists of individual parts that need to
be accomplished. The parts of the task are assumed to be
generated periodically over time.

Let us have a homogeneous swarm of N simple robots,
which is used to execute task i , due by its deadline Di . Each
of these robots is able to accomplish one part of i at a time.
Since i is a constructive task whose successful execution
depends on accomplishing a particular number of its parts,
robots need to collaborate to achieve this number. We use
βi j (Di ) to denote the discrete random variable associated
with the number of parts that can be accomplished by robot
j up to the deadline Di . The performance of the individual
robots represents independent variables as the parts of the
task are re-generated, thus the parts performed by a robot do
not affect the probability of another robot to execute them.
The swarm performance on task i up to the same deadline
is denoted by ωi (Di ), i.e., the total number of parts accom-
plished by the swarm during the time interval [0, Di ]. The
swarm performance ωi (Di ) is calculated as the sum of the
N -robot contributions:

ωi (Di ) = βi1(Di ) + βi2(Di ) + · · · + βi N (Di )

=
N∑

j=1

βi j (Di ) (1)

We divide the time period between the start of the exe-
cution t = 0 and the task deadline Di into equal and
non-overlapping time windows each with the length τ . The
length τ of the time window is selected under the following
constraints: it should be equal to or greater than the aver-
age time required by a single robot to accomplish one part
on task i , the task deadline Di should be a multiplier of τ

and τ should be significantly smaller than the task deadline,
τ � Di .

The swarm performance at deadline Di is the sum of the
swarm contributions over all the time windows included up
to the deadline Di . Hence, we can compute the swarm per-
formance at the deadline Di as in the following:

ωi (Di ) = ωi (τ1) + ωi (τ2) + · · · + ωi (τK )

=
K∑

j=1

ωi (τ j ) (2)

where K is the number of time windows included up to the
deadline Di .

On the other hand, the swarm performance at the deadline
Di is the sum of the individual contributions of the robots
over all the time windows. Based on Eqs. (1) and (2), the
swarm performance can be computed in terms of the robot
individual contributions as in the following:

ωi (Di ) = (βi1(τ1) + βi2(τ1) + · · · + βi N (τ1)) + · · ·
+ (βi1(τK ) + βi2(τK ) + · · · + βi N (τK ))

=
K∑

j=1

N∑

l=1

βil(τ j ) (3)

Characterizing the performance obtained by a swarm of N
robots at the deadline Di is performed probabilistically. Both
the probability density function (PDF) and the cumulative
distribution function (CDF) of the random variable associ-
ated with the swarm performance are computed. We aim to
perform this analysis with theminimum consumption of time
and resources by launching short-term real experiments or
computer simulations. The performed analysis helps us to
answer questions, such as what is the probability of achiev-
ing a specific swarm performance Si at the deadline Di under
the influence of spatial interferences?

Pr(ωi (Di ) � Si ) (4)

4 Probabilistic analysis of swarm performance

In this section, we perform a probabilistic analysis of the
swarm performance over long-term tasks under the influence
of spatial interferences. The swarm performance ωi (τ j ) dur-
ing the time window τ j is the number of parts accomplished
by the swarm within the time window τ j . Concurrently,
the single robot contribution βil(τ j ) is the number of parts
accomplished by the single robot within the time window τ j .
Those two variables are discrete random variables, whose
mean and the variance are influenced by the number of
robots working on the task. Additionally, they are affected
by the work density, which refers to the number of task
parts available at the working arena. The model developed
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in this paper considers a fixed swarm size while executing
the task. However, technical defects may happen while the
system is operating and lead to a reduction in the number of
functioning robots. However, such a loss is generally small
enough in comparison with the number of robots available
in the swarm, thus it can be ignored. On the other hand,
the assumption of having a constant work density is asso-
ciated with several real-world applications. Examples could
include recycling systems in which robots are responsible to
retrieve objects excreted continuously at specific locations
to some recycling destination. Another example could be a
production-transport system, inwhich objects are assumed to
be produced continuously at different locations and require
to be transported to specific delivery points. The analysis of
the swarm performance is done based on the well-known
CLT. CLT states that the sum of a large enough number of
random variables, which are identically distributed with the
mean μ and the variance σ 2, is normally distributed and can
be characterized by the following mean and variance:

μn = nμ (5)

σ 2
n = nσ 2 (6)

Let us denote the mean and the standard deviation of the
swarmperformanceωi (τ )obtainedwithin the timewindow τ

by:μωi (τ ) and σωi (τ ), respectively. According to the CLT, the
long-term swarm performance will be normally distributed
with the following mean and variance μωi (τ ) and σ 2

ωi (τ ):

ωi (Di ) ∼ Norm(Kμωi (τ ), Kσ 2
ωi (τ )) (7)

The mean and the standard deviation of the random vari-
able associated with the single robot performance βi j (τ ) are
denoted by μβi j (τ ) and σβi j (τ ), respectively. Based on the
CLT, the long-term swarm performance will be normally dis-
tributed with the following mean and variance μβi j (τ ) and
σ 2

βi j (τ ):

ωi (Di ) ∼ Norm(K Nμβi j (τ ), K Nσ 2
βi j (τ )) (8)

Consequently, the swarm performance can be characterized
probabilistically using the cumulative distributed function
(CDF) of the normal distribution, which for the mean μ and
the variance σ 2, which is defined as in the following:

Pr(X � x) = 1

2
+ 1

2
erf

(
x − μ

2σ 2

)
(9)

where erf is the error function.
We substitute the random variable X with the swarm per-

formance ωi (Di ) and the value of the small x with a desired
performance Si that represents the number of parts required

to be accomplished up to the task deadline Di . The probabil-
ity we are interested to calculate in Eq. (4) can be obtained
using the CDF of the normal distribution as in the following:

Pr(ωi (Di ) � Si ) = Pr(ωi (Di ) > (Si − 1))

= 1 − Pr(ωi (Di ) � (Si − 1)) (10)

Hence, CLT can be applied to characterize the long-term
performance of swarm robotics system using any of the fol-
lowing inputs:

• The swarm performance over short experiments: the
swarm performance at the deadline Di is the sum of the
swarm contributions over all time windows included up
to the deadline Di . We map each of these swarm contri-
butions to a random variable with the mean μωi (τ ) and
the variance σ 2

ωi (τ ) which are measured over short exper-
iments of the length τ . Consequently, CLT can be applied
to characterize the swarm performance at the Di as the
sum of these random variables, as in Eq. (2).

• The single robot performance over short experiments:
the swarm performance at the deadline Di is the sum of
the individual contributions of the robots over all time
windows included up to the deadline Di . As the single
robot performance over one timewindow experiment can
be measured by the robot itself, this estimation repre-
sents a “self-organized” one. The robot works on the task
for short-term experiments to estimate the mean and the
standard deviation of its performance during one time
window. After that, CLT is applied to characterize the
swarm performance obtained at Di using Eq. (3).

In the following, we verify themodel proposed for estimating
and characterizing the swarm performance over long-term
experiments. The PDF and CDF of the swarm performance
which are computed using the model are compared with
their counterparts which are obtained empirically from both
the foraging task and the object filtering task. Additionally,
statistical tests are performed to check the normality of the
performance distribution.

5 Foraging task

We consider a foraging task, in which a large number of
objects (150 in our experiment) are scattered uniformly over
an (9×12m2) object-area. Those objects need to be retrieved
back to a (3 × 12 m2) nest-area, see Fig. 1. The robots are
located initially at the nest, where they are uniformly distrib-
uted. The nest-area is marked with an array of lights to attract
the robots back while they are retrieving the objects. During
the task execution, each robot can be in one of the follow-
ing states: exploring or retrieving. A robot in the exploring
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Fig. 1 A snapshot of the foraging task

Fig. 2 The robot controller

state searches the arena for objects to retrieve them back.
The search is performed as a random walk that is combined
with an obstacle avoidance behavior. As soon as an object is
found, the robot changes its state to the retrieving state and
starts moving back to the nest-area attracted by the lights,
while applying obstacle avoidance. Figure 2 depicts the con-
troller state machine of the foraging robots.

The retrieved objects are assumed to be replaced with new
objects, thus, the objects density remains constant throughout
the whole experiment. As mentioned earlier, tasks with part
replacement could be mapped to several real-world applica-
tions such as recycling systems, in which robots are required
to collect materials from particular locations and retrieve
them to some recycling point. These materials will be gener-
ated periodically at the same locations. Another example is
the datamules in wireless sensor networks (Shah et al. 2003),
in which swarm robotics systems can be deployed to collect
data. Data are generated periodically at the sensor nodes and
need to be retrieved to a central node for processing. The
robotic simulator ARGoS2 (Pinciroli et al. 2012) is used to
compute an average performance function through repeated

2 ARGoS is a discrete-time physics-based simulation framework devel-
oped within the Swarmanoid project. It can simulate various robots at
different levels of details, as well as a large set of sensors and actuators.
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Fig. 4 Swarm performance during 1s

high-level simulations to characterize the effect of the spatial
interferences on both the single robot performance and the
swarm performance. The simulations are repeated for 125
runs. Figure 3 shows how the mean of the single robot per-
formance decreases by increasing the number of robots for
different swarm sizes. Whereas, the change in the mean of
the swarm performance while applying the same increment
in the swarm size is depicted in Fig. 4. We consider a forag-
ing task that is carried out by a swarm of 30 homogeneous
robot and is due to the deadline Di = 12× 103 s. The length
of the time window is set to τ = 100 s. The time window τ

is selected long enough to retrieve at least one object back
to the nest and enough smaller than the deadline Di . Figure
5 shows the mean μ in addition to the 3 × σ of the random
variable associated with the number of objects retrieved over
all the time windows included up to Di = 12× 103 s. Figure
6 shows the time it takes the average of the swarm perfor-
mance to stabilize. This time is referred to as the start-up
time. At the beginning, the swarm retrieves a higher num-
ber of objects as all robots start synchronized free of objects.
They start to search and retrieve objects all together. After-
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Fig. 6 μ and 3 × σ of the number of objects retrieved over all 100 s
intervals

wards, robots lose their synchronization and become divided
into a group that is still searching to retrieve objects and a
group that is currently retrieving objects. This is the reason
behind the presence of such a start-up time after which the
system performance stabilizes around its estimated mean.
The accuracy of the CLT estimation for the swarm perfor-
mance is influenced by including the system performance
obtained during the start-up time or excluding it. This influ-
ence varies based on the relative relation between the length
of both: the deadline Di and the start-up time.

In the following, the swarm performance will be charac-
terized using each of the two inputs mentioned earlier, the
swarm contributions and the single robot contributions both
measured over short-term experiments.

5.1 Swarm performance over short-term experiments

We substitute the swarm contribution achieved by the swarm
within one time window τ = 100 s in Eq. (2). The deadline
Di = 12× 103 s includes 120 time windows of length 100 s:
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Fig. 7 Mean of retrieved objects up to Di = 12 × 103 s vs. the mean
predicted by CLT
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Fig. 8 Standard deviation of retrieved objects up to Di = 12 × 103 s
vs. the standard deviation predicted by CLT

ωi (Di ) =
K∑

j=1

ωi (τ j ) ⇒ ωi (12 × 103) =
120∑

j=1

ωi (100) (11)

Based on CLT, the random variable associated with the num-
ber of objects retrieved at the deadline Di = 12 × 103 is
normally distributed with the following mean and standard
deviation:

μωi (12×103) = 120μωi (100) (12)

σωi (12×103) = √
120σωi (100) (13)

Figures 7 and 8 show the mean and the standard deviation
of the number of objects retrieved up to the deadline Di =
12 × 103, as compared to the mean and standard deviation
predicted by CLT using Eqs. (12) and (13). The probability
of retrieving a number of objects which is equal to or greater
than Si at the deadline Di can be derived using the CDF of
the normal distribution as follows:
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Pr(ωi (12 × 103) � Si )

= 1 −
[
1

2
+ 1

2
erf

(
(Si − 1) − μωi (12×103)√

2σωi (12×103)

)]

= 1 −
[
1

2
+ 1

2
erf

(
(Si − 1) − 120 μωi (100)√

2
√
120 σωi (100)

)]
(14)

Figures 9 and 10 show both the computed and the simu-
lated PDF of the number of objects retrieved by the swarm
at the deadline Di = 12 × 103. In Fig. 9 using the mean
μωi (100) = 10.3411 and standard deviation σωi (100) =
2.7931 measured after the system stabilizes and in Fig. 10
using the mean μωi (100) = 10.6239 and standard deviation
is σωi (100) = 2.9755 measured with taking the system per-
formance during the start-up time into account. Figures 11
and 12 show the computed as well as the simulated CDF of
the number of retrieved objects also in Fig. 11 after the sys-
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Fig. 11 CDF of the retrieved number of objects without taking the
start-up time into account

600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

P
r(ω

i(1
20

00
) <

= 
S i)

Empirical CDF

Empirical
Theoretical

Number of retrieved objects during
Di = 12000

Fig. 12 CDFof the retrieved number of objectswith taking the start-up
time into account

tem stabilizes and in Fig. 12 with taking the start-up time into
account.

5.2 Single robot performance over short-term
experiments

Here, we characterize the swarm performance at the deadline
Di = 12 × 103 in a self-organized manner using the single
robot performance measured during one time window and
we substitute it in Eq. (3) as in the following:

ωi (Di ) =
K∑

j=1

N∑

l=1

βil(τ j ) ⇒ ωi (12 × 103)

=
120∑

j=1

30∑

l=1

βil(100) (15)

123

Author's personal copy



44 Y. Khaluf et al.

600 800 1000 1200 1400 1600 1800
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P
r(ω

i(1
20

00
) =

 S
i)

Empirical
Theoretical

Number of retrieved objects during
Di = 12000

Fig. 13 PDF of the number of retrieved objects characterized based
on single robot performance

According to the CLT, the random variable associated with
objects retrieved by the swarm up to the deadline 12×103 is
normally distributed with the following mean and standard
deviation:

μωi (12×103) = 120 × 30μβi j (100) (16)

σωi (12×103) = √
120 × 30σβi j (100) (17)

This estimation canbe performedby the robots themselves
which may help them in making appropriate allocation deci-
sions. The probability of interest in Eq. (4) can be computed
using the CDF of the normal distribution as follows:

Pr(ωi (12 × 103) � Si )

= 1 −
(
1

2
+ 1

2
erf

(
(Si − 1) − μωi (12×103)√

2σωi (12×103)

))

= 1 −
(
1

2
+ 1

2
erf

(
(Si − 1) − 120 × 30 μβi j (100)√

2
√
120 × 30 σβi j (100)

))

(18)

Measuring the swarm performance after the system stabi-
lizes is straightforward as mentioned above. Therefore, the
swarm performance is simulated only in the case of taking
the start-up time into account. Figure 13 shows a comparison
between the computed and the simulated PDF of the number
of objects retrieved by the 30 robot at Di = 12× 103. Addi-
tionally, Fig. 14 shows the same comparison, however, of the
CDF.

The analysis performed using the single robot contribu-
tions is not the same accurate as the one performed using the
swarm contributions. The reason behind is that when swarm
contributions are used, the performance is averaged over N
robots rather than using a single trail, i.e., the contribution of
a single robot.
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Fig. 14 CDF of the number of retrieved objects characterized based
on single robot performance

6 Objects filtering task

In this section, we focus on an object filtering task, in which
an arena of (6 × 6 m2) is divided into two equal parts, the
white part and the black part. The two parts are separated
by a wall, which has four passages to connect them. The
passages are marked by lights to attract the robots while they
are filtering the objects. Two types of objects, red and yellow,
are scattered uniformly on both parts of the arena. The goal is
to transport the red objects to the white part of the arena and
the yellow objects to the black part of it, see Fig. 15. Objects
filtering is a more complicated task than a simple foraging.
In this task, robots are required to distinguish between the
different types of objects and to recognize the arena they
are working at. Additionally, the arenas are built in a way
that limits the access from the one to the other and restricts

Fig. 15 A snapshot of the object filtering task
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the flow of robots between them. Such factors have a direct
influence on the swarm performance and our goal here is
to show that the presented approach is still representing an
efficient tool to estimate the long-term performance of the
swarm even under such conditions.

We use a swarm of homogeneous robots to execute the
objects filtering task. Initially, an equal number of robots
is assigned to each of the arena parts (20 robots in our
experiment). The robots of each part start from uniformly
distributed positions. Each robot starts the execution by iden-
tifying the arena color it is placed on and based on that, the
color of the item it should filter. The robot starts to explore
performing a randomwalk combined with an obstacle avoid-
ance behavior. As soon as it finds one of the objects that
needs to be filtered, it picks the object and starts moving
towards the light source. Approaching the destination part of
the arena requires the robot to move through one of the pas-
sages which connect the two arena parts. In case of conflicts
with other robots which are trying to use the same passage,
ties are broken in terms of the longer distance traveled within
the passage. I.e., the robot which has traveled a longer dis-
tance within the passage is given the passage free and all
other robots should move back. After the robot arrives to the
part of the arena to which the transported object belongs,
it starts searching for a free loading location to drop the
object. This is done using a combined behavior of obsta-
cle avoidance and ground detection, in which the robot uses
its ground sensors to detect free patches on the ground where
the object can be dropped. As soon as the object is dropped,
the robot starts working to filter objects of its current arena
part. The controller state machine of the robots is shown
in Fig. 16.

Filtered objects are replaced with new objects and, there-
fore, the density of the objects remains constant throughout
the whole experiment. The simulator ARGoS is used to
compute an average performance function through repeated

Fig. 16 The robot controller
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Fig. 17 Single robot performance during 1s

simulations. The obtained performance function character-
izes the effect of the spatial interferences on both the single
robots performance and the swarm performance. The sim-
ulations are repeated 20 runs for each swarm size and the
obtained dynamics of the single robot and the swarm perfor-
mances are similar to those of the foraging task reported in
Sect. 5. The mean of the single robot performance decreases
while increasing the swarm size as we can see in Fig. 17.
On the other hand, the mean of the swarm performance
increases while increasing the number of robots up to some
optimal performance after that it starts to decrease affected
by the influence of the spatial interferences. The decrement
in the swarm performance is slower in comparison to the one
observed in the foraging task.

This is caused by the limited possibility of using the
passages between the two parts of the arena. Therefore,
increasing the number of robots, increases the number of
objects found by the robots, but not the number of filtered
objects. Continuing to increase the number of robots leads
to decrease the swarm performance since the exploration
process becomes difficult because of the high intensity of
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Fig. 18 Swarm performance during 1s

123

Author's personal copy



46 Y. Khaluf et al.

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

Time in seconds

S
or

te
d 

ob
je

ct
s 

by
 4

0 
ro

bo
t 

 o
ve

r 3
00

0 
se

co
nd

Mean from simulation
3 std from simulation

Fig. 19 μ and 3 × σ of the number of objects filtered during 3000 s
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Fig. 20 μ and 3 × σ of the number of objects filtered over all 100 s
intervals

interferences between robots. Figure 18 shows the swarm
performance obtained for different swarm sizes.

We consider an object filtering task which is executed by
a swarm of 40 robots, 20 robots on each arena part. The task
deadline is set to Di = 3000 s and we use the same time
window as for the foraging task in Sect. 5 with the length
τ = 100 s. Figure19 shows the mean μ and the 3× σ of the
random variable associated with the number of objects fil-
tered over all the timewindows included up to the deadline of
3000 s. In Fig. 20, we can notice how the swarm performance
is stabilized around its estimated mean starting from the
beginning of the execution up to the deadline. Therefore, we
do not have the same problemas in the foraging task, inwhich
the system performance requires a particular start-up time to
stabilize.

6.1 Swarm performance over short-term experiments

The swarm performance is analyzed using the swarm contri-
butions measured over short-term experiments, i.e., during
one time window τ = 100 s. Equation (2) is used after sub-
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Fig. 21 PDF of the number of filtered objects characterized based on
swarm performance

stituting the deadline with Di = 3000 s, which includes 30
time windows of length 100 s:

ωi (Di ) =
K∑

j=1

ωi (τ j ) ⇒ ωi (3000) =
30∑

j=1

ωi (100) (19)

The random variable associated with the number of objects
filtered up to the deadline Di = 3000 s is normally distributed
with the mean and the standard deviation computed using the
CLT, as in the following:

μωi (3000) = 30μωi (100) (20)

σωi (3000) = √
30σωi (100) (21)

Our goal is to provide a probabilistic characterization of
the swarm performance over the deadline of 3000 s, per-
formed using both the PDF and the CDF. The probability
of filtering a number of objects which is equal to or more
than Si due to the deadline Di can be computed using the
CDF of the normal distribution as follows:

Pr(ωi (3000) � Si )

= 1 −
[
1

2
+ 1

2
erf

(
(Si − 1) − μωi (3000)√

2σωi (3000)

)]

= 1 −
[
1

2
+ 1

2
erf

(
(Si − 1) − 30 μωi (100)√

2
√
30 σωi (100)

)]
(22)

The PDF is measured over 50 runs of ARGoS simulations.
After that, it is compared with the PDF computed using the
CLT and Fig. 21 illustrates their consistency. Concurrently,
Fig. 22 depicts both the computed and the simulated CDF
of the number of objects filtered by the swarm up to the
deadline.
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Fig. 22 CDF of the number of filtered objects characterized based on
swarm performance

6.2 Single robot performance over short-term
experiments

The swarm performance obtained at the deadline Di =
30,000 can be estimated as explained in Sect. 5.2 using the
performance of the single robot measured during short-term
experiments. The number of filtered objects by the swarm
during the deadline 3000 is normally distributed with the
following mean and standard deviation:

μωi (3000) = 30 × 40μβi j (100) (23)

σωi (3000) = √
30 × 40σβi j (100) (24)

Thus, the probability in Eq. (4) can be computed using the
CDF of the normal distribution as in the following:

Pr(ωi (3000) � Si )

= 1 −
(
1

2
+ 1

2
erf

(
(Si − 1) − μωi (3000)√

2 σωi (3000)

))

= 1 −
(
1

2
+ 1

2
erf

(
(Si − 1) − 30 × 40 μβi j (100)√

2
√
30 × 40 σβi j (100)

))

(25)

Comparisons between the computed and the simulated
PDF and CDF are depicted in Figs. 23 and 24, respectively.

7 Conclusion

In this paper, we have presented a probabilistic analysis of
the swarm performance obtained over long-term deadlines
and under the influence of complex dynamics (spatial inter-
ferences). Estimating the performance of a swarm robotics
system is an important process, especially for cases in which

0 100 200 300 400 500
0

1

2

3

4

5

6

7
x 10−3

Number of sorted objects during Di = 3000

P
r(ω

i(3
00

0)
 =

 S
i)

Empirical
Theoretical

Fig. 23 PDF of the number of filtered objects characterized based on
single robot performance
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Fig. 24 CDF of the number of filtered objects characterized based on
single robot performance

this performance needs to be planned under specific con-
straints, e.g., temporal constraints. In such cases, an early
estimation of the long-term performance of a swarm is sig-
nificantly important. This paper investigates the use of the
CLT for analyzing the swarm performance probabilistically
under the complex dynamics of spatial interferences. This
represents an efficient analysis in terms of preserving time
and resourceswhich are requiredwhen real-time experiments
or computer simulations are performed. The performance
analysis can be accomplished using either the swarm contri-
butions or the single robot contributions both over short-term
experiments. The normality of the obtained swarm perfor-
mance was tested for all the conducted experiments using
the well-known statistical test, the Jarque–Bera test (Jarque
and Bera 1980). The result of the test was for all data sets
h = 0. I.e., that the test does not reject the null hypothesis at
the 5% significance level. The null hypothesis states that the
performance data come from a normal distribution.
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Characterizing the swarmperformance probabilistically is
useful, particularly for tasks inwhich the swarmperformance
and/or the single robot performance do not follow a well-
known distribution (complex dynamics). In such cases, the
performed analysis can be applied efficiently to characterize
the swarm performance. In addition, having the possibility
to analyze the swarm performance on the global level by per-
forming short-term experiments allows for launching repair
mechanisms at an early stage of the execution.

As a future work, we are planning to use the probabilis-
tic model presented in this paper for developing autonomous
task allocationmechanisms for time-constrained tasks.Those
mechanisms aim to optimize the assignment of robots to a set
of tasks based on the amount of work the swarm can accom-
plish (estimated by the model) in comparison to a required
amount of work. In addition, we are planning to study the
validity of the proposed model on different kinds of tasks
apart from the constructive tasks.
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