
Task Allocation Strategy for Time-Constrained Tasks in Robots Swarms

Yara Khaluf1 and Franz Rammig1

1Heinz Nixdorf Institut, University of Paderborn, Germany
{yara, franz}@hni.uni-paderborn.de

Abstract

Task allocation is a key problem, which has a direct influ-
ence on the system performance in all kinds of distributed
systems. This paper focuses on a specific kind of task alloca-
tion in swarm robotic systems, where the tasks are associated
with specific time constraints.
The paper presents a self-organized task allocation strategy,
which aims to assign robot swarms to time-constrained tasks
in a distributed manner. The robots assignment is performed
based on particular specifications including task sizes and
deadlines in addition to the specification of the single robot
performance on the considered tasks. No central control is
required to govern the swarm behaviour and no communica-
tion is exploited among robots.

1 Introduction
Swarm robotics is a recent field of research that takes in-
spiration from complex natural systems such as colonies of
social insects (ants, honeybees, etc.) or groups of cooperat-
ing animals. It is a kind of mobile distributed system with a
high density and which can be mainly characterized by its:
redundancy, where robots failures do not affect the system
functionality, scalability, since the system can be extended
by adding robots, and flexibility where it can be used to per-
form a large spectrum of applications.
In many practical robotics applications the successful exe-
cution of a task depends not only on the logical correct-
ness of the operations that robots are performing, but also
on the time before which the results are delivered. Such
tasks are referred to as real-time tasks and they are gener-
ally categorized according to their deadlines into: hard real-
time tasks, where missing the deadline can lead to catas-
trophic results and soft real-time tasks, where missing the
deadline decreases the quality of results. Real-time tasks
will be common to encounter as soon as the swarm robotic
systems are exported out of the research labs to be involved
in real life applications. While dealing with hard-deadlines
is beyond the capabilities of a fully stochastic system like
swarm robotics, tasks with soft deadlines are the suitable
candidates for swarm robotics. This paper discusses real-
time tasks with soft deadlines, which need to be performed

by a swarm of homogeneous robots. The goal is to assign
the robots to the tasks under their time constraints in a fully
distributed and autonomous manner. The proposed alloca-
tion strategy neglects initially the influence of physical in-
terferences among robots, on the overall performance of the
system. However the strategy can be extended later to in-
clude this influence.
The rest of the paper is organized as follows: section 2 re-
views the literature of task allocation in swarm robotic sys-
tems with and without time constraints. In section 3 a formu-
lation of the task allocation problem under time constraints
is introduced. The designed allocation strategy is explained
with its different stages in section 4. Section 5 presents a
numerical example with its Monte-Carlo simulations to il-
lustrate the steps of the allocation strategy and verify it. In
section 6 a swarm robotic scenario is introduced where the
allocation strategy is applied and simulated. The paper is
concluded in section 7.

2 Related Work

Task allocation can be found in natural such as in ant and bee
colonies Bonabeau et al. (1998). Mathematical models of
task allocation, which focus on simple reactive mechanisms
and study the fraction of robots engaged in a particular task
as a function of the number of available tasks as perceived by
the robots, were performed like Lerman et al. (2006). The
task allocation solutions proposed in the literature can be
classified in three broad categories: centralized, negotiation-
based and self-organized: centralized techniques assume the
presence of a central coordinator responsible for the alloca-
tion of the agents to the tasks. Self-organized systems, on
the contrary, are constituted by peers that take decisions au-
tonomously, with limited negotiations with other peers and
without a central point of control. This kind of systems
are generally less prone to catastrophic failures and consid-
ered a better approach when rapid adaptation to changes in
the environment is required. Most of these studies tackle
simple problems without task interdependencies, Dahl et al.
(2009). Negotiation-based approaches, generally based on
auction-based strategies, are the compromise solution be-
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tween centralized and self-organized systems, Dias et al.
(2005), Gerkey and Mataric (2002), Zheng et al. (2006). In
auction-based strategies, the robots bid on the announced
task according to specific task characteristics and to their
relative capabilities. One of the characteristics that is of-
ten criticized in this approach, is that many negotiation-
based solutions assume a fully connected network among
the robots, which is not the case in many realistic applica-
tions. A comparison between the auction-based approaches
and the self-organized ones based on threshold can be found
in Kalra and Martinoli (2006). A general taxonomy of task
allocation strategies in robotic systems has been presented in
Gerkey and Mataric (2004) along three main comparisons:
single-task robots (ST) vs. multi-task robots (MT), where
single and multiple robots are able to perform only one task
at time; single-robot tasks (SR) vs. multi-robot tasks(MR),
where each task needs one robot or more, and the instan-
taneous assignment (IA) vs. time-extended assignment (TA)
where it is assumed that the robots and the environment al-
low only for an instantaneous task allocation with no future
planning.
In swarm robotics, response-threshold mechanisms are rela-
tively common Nouyan et al. (2005), Nouyan et al. (2004),
Ducatelle et al. (2009b), Ducatelle et al. (2009a), Krieger
and Billeter (2000). In this approach, each robot is pro-
grammed to react to stimuli associated to the different tasks.
Agassounon and Martinoli (2002) introduce a task alloca-
tion for the traditional swarm task ”foraging”. Another
threshold-based algorithm for allocating workers to a given
task whose demand evolves dynamically over time is pre-
sented in Agassounon et al. (2001). In Liu et al. (2007) a
mathematical model for a similar task allocation behaviour
is introduced. Some works combine the common swarm
response-threshold approach with a kind of communication
protocol to avoid the need for a central unit as in Zhang
et al. (2007). A very few works to our best knowledge,
have assumed a target distribution for the robots over all the
available tasks to be reached like we can find in McLurkin
and Yamins (2005). Few authors have studied the problem
of task allocation in swarm robotic systems with time con-
straints associated to tasks. Some of the performed studies
were based on the auction techniques for the allocation in
respect to deadlines like in Guerrero and Oliver (2010) and
Guerrero and Oliver (2011). Other works like Acebo and
Rosa (2008), have introduced a heuristic based on the so-
called Bar-System model, where the key idea is to simulate
the way waitresses assign themselves to bar customers in
an efficient and distributed way. The approach is then ap-
plied to a group of loading robots for a commercial harbour.
In Schneider et al. (2005) and Jones et al. (2007) market-
based task allocation strategies, where time is the critical
constraint, are considered together with a reward mechanism
associated to a task being successfully completed.

3 Problem Formulation
The problem of autonomous task allocation in presence
of deadlines can be formulated as follows: a swarm
of N robots should be allocated to a set of m tasks
{T1, . . . , Tm}. The task deadlines {D1, . . . , Dm} and the
task sizes {S1, . . . , Sm}, are assumed to be known a priori.
The task is assumed to be built up of individual parts, where
the robot can accomplish one part per time. The size of any
task represents the discrete number of parts which should
be accomplished within the task deadline. Each task Ti is
composed of Si parts and accomplishing Ti is achieved by
accomplishing all of its Si parts. The real-time tasks we
consider in our study have soft deadline and require to be
executed in parallel. The switching costs between them are
negligible in comparison to the task deadlines. The system
is designed as a fully autonomous one, where no communi-
cation among robots is applied and no central unit is used
for the allocation purposes.
The single robot performance on a specific task is expressed
in terms of the random time required by the robot to accom-
plish one part of the considered task. The random variable
associated with the single robot performance is modelled
in this paper as a normal distributed variable with a task-
specific mean and a task-specific standard deviation. The
single robot performance is an essential input for the devel-
oped allocation strategy. Robots can measure their individ-
ual performances by working on each of the considered tasks
for a specific period of time, registering the times they re-
quire to accomplish individual parts and estimate the mean
and standard deviation related to their performance on each
task. Tasks are served according to their priorities, which
are derived based on the task deadlines. The task with a
shorter deadline has a higher priority to be executed. Before
starting the execution, a list of the m tasks with their sizes
and deadlines is provided to the swarm. These task speci-
fications in addition to the single robot performance on the
different tasks are the inputs used later to perform the tasks
allocation.
We concentrate in this paper on a kind of dynamic task allo-
cation, where the robot is allowed to stay on the same task
or to switch to another one. The switching decision could
be taken each time the robot finishes working on a part of
the current task or at specific time points. Switching at spe-
cific time points, during the execution times of the tasks, re-
quires global synchronization among the robots to take the
decision2 at the specified time point. Dynamic task alloca-
tion is useful to be applied in many applications, where the
switching costs among tasks can be considered being neg-
ligible. Such cases can be encountered when the tasks oc-
cupy a shared physical arena, so robots do not need to travel
among them while switching. An example is foraging multi-
ple kinds of objects where each kind represents an individual
task and all kinds are scattered on the same arena. Another
possibility to omit switching costs, is when they are negligi-
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ble in comparison to the task deadlines.
The selection of the next task is performed by means of al-
location probability matrices, which are calculated based on
the task specifications and the single robot performance. The
probability matrices are of the form Pij , which represents
the probability to switch to task Tj from task Ti while the
switching costs are negligible in comparison to the dead-
lines.

4 Robot Allocation Strategy
The goal of this study is to develop a feasible task allo-
cation strategy that allows robots to assign themselves au-
tonomously to a set of real-time tasks with respect to the task
deadlines. In a fully stochastic system like swarm robotics
where even the performance of a single robot on a specific
task represents a stochastic variable, it is particularly diffi-
cult to develop an allocation strategy which can guarantee
the execution of the task within its deadline.
Our strategy attempts to find an optimal number of robots
to be assigned to each task based to the size and deadline of
the task in addition to the performance of the single robot on
that task. The required number of robots on each task is used
to derive allocation probability matrices, which are used by
the robots to allocate themselves autonomously to the tasks
during their execution.
Each task is considered to be ”inactive” as soon as it is com-
pletely accomplished or when its deadline is exceeded, oth-
erwise the task is considered as ”active”. Robots are not
required to be assigned to inactive tasks. Consequently, the
number of robots available for allocation changes based on
the current number of active tasks. In order for the allocation
strategy to exploit the current number of robots available for
allocation, the time between the start of tasks execution and
the largest deadline, is divided into periods: {π1, . . . , πm}
where:

πi = Di −Di−1 ∀i ∈ {2, . . . ,m} (1)

The first period has the length of the earliest deadline π1 =
D1. Figure 1 illustrates the periods and the active tasks
within each period.

Figure 1: Active tasks over the defined periods

4.1 Required Number of Robots
The single robot performance on task Ti is expressed, as
mentioned above, in terms of the time required by a single
robot to accomplish one part of task Ti. This random time
is modelled as a normally distributed variable with the mean
µi and the standard deviation σi. Let us use ki to denote
the number of parts which could be accomplished by a sin-
gle robot on task Ti within its deadline Di. The value of ki
is taken within the discrete range [0,+∞[, which represents
the possible outcomes related to the number of parts could
be accomplished by a single robot within Di. Let us define
the event Ei(ki) that a single robot accomplishes ki parts
on task Ti within Di. We refer to the time spent by a sin-
gle robot to accomplish ki parts by τi(ki), then we have the
following two events equivalents:

Ei(ki) ⇐⇒ τi(ki) � Di (2)

The probabilities of the equivalent events in Eq. (2) are equal
and they represent the probabilities we are interested in:

Pr(Ei(ki)) = Pr(τi(ki) � Di) (3)

As the time spent by the robot to accomplish one part of task
Ti is normally distributed with the mean µi and the standard
deviation σi, the right side of Eq. (3) is the probability that
the sum of ki random variable, each one being distributed
using Norm(µi, σi), is smaller than or equal to Di. It is
well know that the sum of n random variable each one be-
ing distributed with Norm(µ, σ), is a random variable dis-
tributed normally with the mean nµ and the standard devi-
ation

√
nσ. Consequently, the probability Pr(τi(ki) � Di)

in Eq. (3) represents the cumulative density function CDF of
the normal distribution with the mean kiµi and the standard
deviation

√
kiσi.

Pr(τi(ki) � Di) =
1

2
[1 + erf(

Di − kiµi√
2kiσ2

i

)] (4)

The allocation strategy applies the cumulative density func-
tion in Eq. (4) to find out the probability associated with
the event Ei(ki) for each ki ∈ [0, Si], where Si is the size
required to be accomplished on Ti within Di. This prob-
ability P (Ei(ki)) is referred to as the success probability
of the event Ei(ki). The events Ei(ki) are distributed fol-
lowing a binomial distribution with the success probabilities
P (Ei(ki)), see Figure 2.
The expected value of a random variable X which is dis-

tributed according to a binomial distribution with n trials
and the success probability p is given by:

E[X ] = np (5)

We map the number of trials n to the required number of
robots, where each robot can accomplish ki parts with a suc-
cess probabilityP (Ei(ki)). In order to find the required size
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Figure 2: Ei(ki) for each ki ∈ [0, Si] with the success prob-
ability associated to each of ki values

of trials (number of robots), such that one robot of the n
robots is expected to accomplished ki parts within Di, we
substitute the expected value by 1 and the success probabil-
ity by P (Ei(ki)) in Eq. (5), so we have:

1 = niP (Ei(ki)) =⇒ ni =
1

P (Ei(ki))

ni is the number of robots required to achieve an excepted
number of accomplished parts equal to ki within Di by one
robot. However, we aim to achieve an expected number of
accomplished parts equal to Si within Di, hence the required
number of robots is calculated using the following equation:

Ni = ⌈ni

ki
Si⌉ (6)

Let us consider the example of one task with the size Si =
10 parts, the deadline Di = 10 time units. The single robot
performance on this task in terms of the time required by
the single robot to accomplish one part, is normally dis-
tributed. We assume different means of the random time:
µi ∈ {2, 4, 6} and a unique standard deviation σi = 0.01.
The number of parts ki, which could be accomplished by a
single robot within Di can takes its value in [0, 1, . . . ,+∞[.
However the range of interest is ki ∈ {0, 1, . . . , 10}. Each
event Ei(ki) of accomplishing ki parts by a single robot is
associated with a probability calculated using Equation (4).
Figure 3 shows the different values of ki with their success
probabilities calculated for the different means. We consider
the mean µi = 2 for the rest of the example. Figure 4 shows
how the required size of trials ni changes with changing ki.
ni, represents the size of the robots needed to have on aver-
age one robot accomplishing ki parts within Di. In the same
figure we can see the total number of robots Ni required by
task Ti calculated for each ki value.

4.2 Optimal Robot Number and Allocation
Probability Matrices

In the previous section the allocation strategy calculates the
required number of robots Ni, which should be assigned to
task Ti to accomplishSi parts on average within the deadline
Di. There exist several possible number of robots Ni to be
used. Each value of the Ni is associated with a unique value
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Figure 4: The relation between the number of parts ki and
the number of required robots in trials ni and by the task Ni

of parts, ki. The process starts by finding the success proba-
bility related to each event Ei(ki), where ki ∈ {0, . . . , Si}.
After that, the size of the trials (robots), which is required to
have on average one robot accomplishing ki parts within Di,
is determined. Finally the total number of required robots is
calculated using Equation (6).
However, a robot swarm represents a limited resource with a
given size, which applies a strict constraint on selecting the
feasible number of robots Ni, could be assigned to each of
the active tasks during period πj :

m∑

i=j

Ni � N (7)

where N is the size of swarm used in the solution.
The developed strategy attempts to minimize the number
of robots required by each task individually. Assigning the
minimum of the feasible numbers of robots, reduces the im-
pact of potential physical interactions and save robotic re-
sources from unnecessary use. In addition, it provides a
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higher chance to schedule newly arrived tasks. Hence, the
allocation strategy aims to minimize, for all tasks, the ob-
jective function introduced in Eq. (6) under the constraint
of Eq. (7) and consequently to find the optimal number of
robots for any task Ti:

Nopt
i = min(⌈ni

ki
Si⌉) (8)

The optimal number of robots is the robots number, which
the allocation strategy aims to assign to each task though
all the periods where this task is active. However, as the
swarm size is limited to N robots, it is possible to not have
enough robots in order to assign Nopt

i to task Ti over all
its active periods. The allocation strategy starts, for each
period, to satisfy the robot needs of the tasks according to
their priorities, which are based on their deadlines. Lack of
robots can occur on task Ti at any of its periods and this
robot lack leads, in turn, to a lack in the amount of work
was planned to be accomplished by the Nopt

i robots on task
Ti within the considered period. Let us denote the missed
number of robots on task Ti within the period πj by δi(πj).
This number of robots was missed to work on task Ti within
the time τ(πj), which is the length of period πj . We intro-
duce the term of robots lack density to refer to the lack of
robots happened over a specific period of time like τ(πj).
Let us denote the lack density happened on task Ti during
period πj , by αi(πj). This lack density can be calculated as
in following:

αi(πj) = δi(πj)τ(πj) (9)

The lack density associated with all robot lacks, which hap-
pened on task Ti up to period πj is denoted by α

πj

i and rep-
resents the sum of the lack densities over all the task periods
up to πj :

α
πj

i =

j−1∑

k=1

δi(πk)τ(πk) (10)

The goal now, while finding out the required number of
robots to be assigned to task Ti during period πj , is to cover
the robot lacks happened on task Ti up to period πj . The
needed number of robots to cover the lacks that happened
on Ti up to period πj , should be scaled based on the length
of πj . The sum of lack densities associated with the previ-
ous periods is used to find out the number of robots, δπj

i ,
required to cover the lacks of the previous periods:

δ
πj

i = ⌈ α
πj

i

τ(πj)
⌉ (11)

Finally, the allocation strategy can calculate the number of
robots required to be assigned to task Ti during period πj

like follows:

Ni(πj) =

{
Nopt

i + δ
πj

i if Ncurrent � Nopt
i + δ

πj

i

Ncurrent if Ncurrent < Nopt
i + δ

πj

i

(12)

After calculating the number of robots to assign to each task
over the periods where the task is active, the allocation strat-
egy outputs a set of probability matrices associated with the
defined periods. These matrices are used for the dynamic al-
location of the robots. Robots use the probability matrix of
the current period to allocate themselves to the tasks: each
time a robot finishes working on one part of the current task,
or at the beginning of current period all robots allocate them-
selves to the active tasks using the matrix of the period. This
dynamic allocation is a self-organized process, as no central
unit controls the robots for assignment. The allocation prob-
ability Pi(πj) of task Ti in period πj will be then calculated
using the following equation:

Pi(πj) =
Ni(πj)∑m
k=j Ni(πk)

(13)

where Pi(πj) is the probability to switch from any task to
task Ti in period πj .

5 Numerical Example
We introduce in this section a numerical example to illus-
trate the mechanism of the developed allocation strategy.
Let us assume to have a set of 5 tasks {T1, T2, T3, T4, T5}
with the soft deadlines {30, 90, 150, 250, 500} and the sizes
{1000, 2000, 3000, 4000, 5000}. A homogeneous swarm of
N = 400 is used to execute the tasks, where the perfor-
mance of any individual robot belonging to this swarm on
each task is normally distributed with a task-specific mean
µi and a task-specific standard deviation σi. For our ex-
ample the means of the single robots performance on the 5
tasks are as following {2, 3, 4, 2, 6} and the standard devia-
tions are {0.2, 0.3, 0.1, 0.01, 0.5}.
The possible outcomes in terms of task parts, which
could be accomplished by a single robot within the dead-
line on the different tasks, are: k1 ∈ {0, 1, . . . , 1000},
k2 ∈ {0, 1, . . . , 2000}, k3 ∈ {0, 1, . . . , 3000}, k4 ∈
{0, 1, . . . , 4000}, k5 ∈ {0, 1, . . . , 5000}. Each event Eki

of accomplishing ki parts by a single robot on task Ti is as-
sociated with a success probability, that is calculated using
Equation (4).
The allocation strategy selects the minimum number of
robots to be assigned to each of the considered tasks during
the periods where the tasks are active:

T1 = 72 T2 = 72 T3 = 82 T4 = 33 T5 = 62

The sum of the required robots numbers is verified against
the constraint in (7):

72 + 72 + 82 + 33 + 62 � 400

The lack of robots may occur on any of the 5 tasks is 0 over
all periods, as the swarm size is large enough to cover their
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robot needs. Hence, the required number of robots to be
assigned to task Ti on any of its periods is given by:

Ni(πj) = Nopt
i

The probability to apply by each robot for assigning itself to
task Ti during period πj is given by:

Pi(πj) =
Ni(πj)∑m
k=j Ni(πk)

=
Nopt

i∑m
k=j N

opt
k

Thus, the probability matrices over the 5 periods are as in
following:
Period π1:(
P1(π1) P2(π1) P3(π1) P4(π1) P5(π1)
72/321 72/321 82/321 33/321 62/321

)

Period π2:(
P1(π2) P2(π2) P3(π2) P4(π2) P5(π2)

0 72/249 82/249 33/249 62/249

)

Period π3:(
P1(π3) P2(π3) P3(π3) P4(π3) P5(π3)

0 0 82/177 33/177 62/177

)

Period π4:(
P1(π4) P2(π4) P3(π4) P4(π4) P5(π4)

0 0 0 33/95 62/95

)

Period π5:(
P1(π5) P2(π5) P3(π5) P4(π5) P5(π5)

0 0 0 0 62/62

)

We simulate the behaviours of the robots using a Monte-
Carlo simulation which was repeated 500 times for the
tasks specified in the example above. We assume a global
synchronization among the robots. Thus, the allocation
probability matrices calculated above, are used by robots
each at the beginning of its related period to allocate
themselves to the tasks during the whole period. Figure
5 shows a comparison between the average of the total
number of parts accomplished by the swarm on each of the
5 tasks and the task size.

6 Robotic Scenario
In this section we introduce a multi-task scenario where a
homogeneous swarm of simple robots is used to work on
a multi line production system. In the considered system,
different kinds of objects, which are located initially in ob-
jects repositories, Figure 6, should be transported to their
production areas. We assume 3 arenas of different sizes,
where the robot swarm is used to accomplish the transporta-
tion tasks on the different arenas. Each arena is associ-
ated with a task of transporting a specific number of objects
from their repositories to their production area within a spe-
cific deadline. The task sizes are: {70, 90, 110} objects and
the task deadlines are: {30000, 50000, 90000} time units,
where each time unit in our simulation represents 1/10 of
a second. The total size of the used swarm is N = 20
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W
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Figure 5: A comparison between the average of accom-
plished parts resulted from 500 repeat of Monte-Carlo sim-
ulation with the task sizes

robots and the distance between the objects repository and
the production area is for the left arena: 12 meters, for
the middle arena 17 meters and for the right arena 23 me-
ters. The robots are scattered initially in a robot reposi-

Figure 6: Multi-production scenario

tory and as soon as the task execution starts, robots use
the designed probability matrices to allocated themselves
to the different tasks. They start to transport the objects
between their repositories and their production areas mov-
ing on separated tracks, where each track can be used by
only one robot at a time. Applying the track system reduces
the physical interferences between robots and allows to con-
sider them as negligible. The only interferences present are
those between the robot and its track boarders and among
robots while using the robot repository area to pass to an-
other working areas. The production areas are marked with
lights to attract the robots towards them, while transporting
the objects. The robots apply a light attraction behaviour
combined with an obstacle avoidance while transporting the
objects to their production areas and a light repulsion be-
haviour combined with obstacle avoidance while travelling
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to fetch the objects. The simulator, 1ARGoS Pinciroli et al.
(2012), has been used to simulate the scenario, to measure
the single robot performance and to calculate the average of
the swarm performance on the 3 considered tasks. The sin-
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Figure 7: The probability distribution of the single robot per-
formance on the 3 considered tasks

gle robot performance is modelled, like mentioned above, as
a normally distributed random variable with a task-specific
mean and a task-specific standard deviation. In our sce-
nario, the single robot performance was measured via re-
peated high-level simulations in ARGoS in order to char-
acterize the average time required by the single robot to
transport one object on each of the 3 tasks. Figure 7 shows
the probability density function associated with the single
robot performance on each task. The measured means and
standard deviations of this performance are as in following:
µ = {2238, 3297.7, 4482}, σ = {427.44, 576.69, 1071.9}.
The allocation strategy finds the optimal numbers to be as-
signed to each of the 3 tasks within their deadlines follow-
ing the steps explained in section 4. The optimal number of
robots to be assigned to the tasks are as following:

N1 = 6 N2 = 7 N3 = 7

The sum of the required robots is equal to the swarm size
N = 20 robots, thus the need of each task will be fulfilled
over all the periods where the task is active. The allocation
probability matrices are calculated following Equation (13)
and are as in following:
Period π1:(
P1(π1) P2(π1) P3(π1)
6/20 7/20 7/20

)

Period π2:(
P1(π2) P2(π2) P3(π2)

0 7/14 7/14

)

1ARGoS is a discrete-time physics-based simulation frame-
work developed within the Swarmanoid project. It can simulate
various robots at different levels of details, as well as a large set of
sensors and actuators

Period π3:(
P1(π3) P2(π3) P3(π3)

0 0 7/7

)

In this robotic example, we assume no global synchroniza-
tion among the robots. Thus, we allow each robot to use the
probability matrix related to the current period, each time
it finishes transporting one object in order to select its next
task. The fraction of robots, which is not needed in the cur-
rent period, is kept idle in the robots repository.
We repeat the simulation for 10 times before calculating the
average number of transported objects on each task. Figure
8 shows the comparison between the average numbers of
accomplished parts on the tasks and their sizes. The small
difference we can notice in Figure 8 between the number
of transported parts and the number of parts required to be
transported on task T1 is based on the differences of the
inter-intervals of robots decisions. As robots are allowed to
select their tasks each time they finish transporting one ob-
ject, so the time point of the decision is based on the mean
µi and the standard deviation σi of the single robot perfor-
mance on the considered task Ti. Hence, robots working on
a specific task may be faster in taking their switching deci-
sions than others working on other tasks, which risks keep-
ing the robots fractions as required on all tasks over time.
This is one of the weak points of allowing a dynamic switch-
ing decision each time the robot accomplishes one part of its
current task. However, its effect is strongly related to the
differences among the performances of single robot on the
different tasks. In addition, it is necessary to use this kind
of dynamic decisions, when no synchronization is available
among robots to synchronize their decision points with the
beginning of each period.
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Figure 8: The Comparison between the average number of
transported objects on each task and the task size

7 Conclusion
In this paper, we have introduced a novel task allocation
strategy for swarm robotic systems in context of real-time
tasks with soft deadlines. The developed strategy is a fully-
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autonomous one, that uses the tasks sizes, deadlines and the
single robot performance on the considered tasks to output
a set of allocation probability matrices. The resulting matri-
ces are used by the robots, independently through the exe-
cution, to allocate themselves to the different tasks with the
goal of executing them within their deadlines. The consid-
ered swarm is a homogeneous one, where no communication
is exploited among robots. The developed allocation strat-
egy is a dynamic one, where robots are allowed to switch
among the tasks during their execution times. This kind of
dynamic allocation offers several advantages including: the
possibility to cope with non-predicted lack in performance
and the ability to consider on-line arrival of tasks. How-
ever it requires to assume negligible switching costs among
the considered tasks. A numerical example of the allocation
strategy in addition to a robotic scenario were introduced,
where the allocation probability matrices where derived to
be used by individual robots in a set of simulations to ver-
ify the desired swarm performance. In the future work, the
impact of physical interferences on the performance on the
single robot could be taken into account while estimating
this performance. Considering the influence, the physical
interferences has on the performance, leads to more accu-
rate analysis of the allocation.
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