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Abstract

Robot swarms provide a potential solution to a wide range of
collective decision problems due to their large scale, which
enables them to explore large environments, and their local
intensive communication, which allows information sharing.
Despite this, the majority of decision-making processes are
designed to solve a single-step decision process. The goal
of this study is to design robot swarms that are able to de-
velop proper collective responses to decisions that emerge
in parallel in the robot group. We aim to challenge the col-
lective dynamics in order to examine the extent to which it
would be possible to allow two decisions correspondingly re-
lated to parallel development. We consider both best-of-n and
symmetry-breaking decisions and investigate the performance
of two well-known voting mechanisms: the majority rule and
the voting model. Our results confirm the possibility to build
up a proper response to an emerging decision and highlight
the key parameters that influence its success.

Introduction
Collective decision-making (CDM) is fundamental for co-
ordinating and synchronizing a large number of multi-agent
applications Reina et al. (2015); Khaluf et al. (2017); Rausch
et al. (2019b,a); Nauta et al. (2020c,b). It is mostly stud-
ied as a single-step decision process—i.e., forming consen-
sus around one of the solutions (alternatives). However, in
real-world scenarios, decisions are mostly coupled with re-
sponses. Designing collective systems that can demonstrate
collective responses to their decisions is a very challenging
process because of several factors, among the most impor-
tant is the need to identify a proper time point at which the
collective response should start to build up. In this study, we
address a collective decision-response problem, in a simu-
lated robot swarm that aims to solve both best-of-n Valen-
tini (2017); Reina et al. (2017); Nauta et al. (2020a) and
symmetry-breaking Khaluf et al. (2018) decisions. Best-of-n
decisions deal with alternatives of different qualities and aim
to find the best option out of n alternatives. The collective
decision is represented by the establishment of a large major-
ity of robots K ≥ (1 − δ)M that favor the best alternative
(M is the total number of robots). δ is a design parameter
that is defined as 0 ≤ δ � 0.5. Having δ � 0.5 enables

the collective decision of the swarm to be highly coherent
around a single alternative Valentini et al. (2017); Rausch
et al. (2020). Differently, in symmetry-breaking decisions,
all alternatives have identical qualities, thus the collective
decision is represented by the establishment of a large ma-
jority of robots that favor the same alternative. The goal is,
therefore, to converge on any of the available alternatives as
quickly as possible.

In this study, we investigate both symmetry-breaking and
best-of-n problems to model a collective evacuation problem
in a 2D arena using a robot swarm of simulated footbots1.
The mission of the robots is to collectively detect any ongoing
fire, to decide on the most appropriate exit to be used, and
to clear that exit. The collective decision is to decide on an
appropriate exit, while the collective response is to clear the
exit. Response is defined as appropriate when the exit cleared
is the same as the one selected. The swarm consists of two
sub-populations: (i) robots that are equipped with sensors
to measure the environmental temperature. In our study,
we model the temperature using the ground color, which is
why this population of robots uses ground color sensors to
measure the temperature intensity. These robots are referred
to as temperature-sensing robots, and (ii) robots equipped
with grippers to grasp and move objects around. We refer to
those as the gripper robots. Robots from both populations
use range-and-bearing sensor/actuator for communication
(communication radius is set to 1.3 m), proximity sensors
to sense obstacles, and an omnidirectional camera sensor to
detect exits through their color highlight (exit A is blue, and
exit A is red). One significant difference between this study
and other collective decision-making studies is associated
with the individual calculation of the alternative qualities.
The alternative qualities are defined at the global (system
level), e.g., exit B is better than exit A. In other studies Trianni
et al. (2016); Khaluf et al. (2019), when a robot encounters
any of these alternatives, it is able to measure its quality that
aligns with the globally define one. In our study, the quality
perceived by the robots when they encounter alternatives (i.e.,

1http://www.swarmanoid.org/swarmanoid_
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an exit) changes based on the relative position of the robot in
the 2D space—i.e., according to the temperature intensity at
the robot’s position and its relative distance to the two exits.
This individualized quality measure is a major challenge
for collective decision, as the problem to be solved goes
beyond the spreading of information about better alternatives
to also correct the opinions, if needed, that are formulated
individually about the encountered alternatives.

In the collective-response process, robots explore the arena
to detect ongoing fires and measure the quality of the exits in
order to formulate their opinion about the best exit to clear.
Simultaneously, they communicate their opinions to their
local neighborhood to exploit the information collected by
others. In order to combine the opinions received from the
robot’s neighborhood, we investigate two voting mechanisms:
(i) the majority rule, in which the robot adopts the opinion
that is represented by the majority (> 0.5) in its local neigh-
borhood de Oca et al. (2011)—the robot’s own opinion is
counted. (ii) the voter model, in which the robot adopts the
opinion of a randomly chosen neighbor in its neighborhood
Valentini et al. (2014). The key challenge to tackle in our
study is the design of a collective system that can develop a
proper response in parallel to the decision emerging in the
group.

Our results show that the swarm was able to a high extent
to build up a proper response in parallel to its collective
decision. Among the key factors affecting the success of the
collective response is the time point at which the robots (the
gripper robots) react to the decision displayed in their local
neighborhoods. Additionally, our findings illustrate a longer
time to converge to both decision and response for symmetry-
breaking problems compared to best-of-n. Finally, for our
different configurations, the performance of the majority rule
and the voter model show high similarity.

The Model

The Simulated Environment

To evaluate our collective-decision-response algorithm, we
use the ARGoS simulator Pinciroli et al. (2012) to create a
15×15 m2 arena. The arena has 2 exits A and B, each with a
width of 3 m. The exits are blocked using 14 cylinders with
a diameter of 0.1 m. To help the robot navigates towards the
exits, exit A is marked with a red light, while exit B is marked
with a blue light. These lights can be perceived by the robots
across the arena using their omnidirectional camera sensors.
Figure 1a shows the simulated arena with an example of an
ongoing fire (ground color represents the fire intensity, black
is the highest temperature). Figure 1b provides an example of
the evolution of the robot opinions in both populations for the
collective decision (solid line), and the collective response
(dashed line).

The Robot Behavior
Robots from both populations perform a random walk in the
arena for exploration and exploitation purposes. Our random
walk algorithm exploits a pre-defined time interval, during
which the robot keeps moving in a straight line if no obstacle
avoidance is needed. At the end of that duration, the robot
samples a new angle to change its heading direction. Limiting
the time a robot moves in a straight line before changing
direction increases the mixing of the system, which is an
important feature for achieving better collective dynamics.
During all experiments, we set the straight line duration to
100 time steps.

The temperature-sensing robots The temperature-
sensing robots are engaged in the task of detecting any
ongoing fire, and decide on the safest (the furthest) exit
to be cleared. When a temperature-sensing robot i is not
avoiding obstacles, it uses its ground sensors to measure
the temperature at its current position. Additionally, robot i
estimates its distance to each of the exits at time t: σi(E, t) to
exit E, using its omnidirectional camera sensor. After that, it
weighs the distance to each exit by the intensity τi(Fk, t) of
the fire Fk measured at time t at the current position of robot
i. This weight is defined as τi(Fk, t) ∈ [0, 1]. τi(Fk, t) = 0
for white ground where no fire, and τi(Fk, t) = 1 for the
highest temperature (black color). The quality of an exit E at
time t is defined then by robot i as follows:

ηi(E, t) = τi(Fk, t)σi(E, t) (1)

As mentioned above, this is a key difference to other col-
lective decision-making studies, how robots measure the al-
ternative quality individually (i.e., local quality measure). In
our study, ηi(E) depends on both the position of the robot
that impacts the current temperature intensity measure, and
the distance to the exit measure. Therefore, ηi(E) is not
only different between robots but also for the same robot
over different time points as the robot moves. These indi-
vidual quality computations are shared in the robot’s local
neighborhood—i.e., all other robots within the communica-
tion radius of robot i—to formulate the robot’s opinion.

The gripper robots The gripper robots are responsible for
generating a proper response by clearing the exit that is col-
lectively agreed on by the temperature-sensing robots. There-
fore, when gripper robots are not avoiding obstacles, they are
moving using the aforementioned random walk strategy and
listening to the opinions exchanged among the temperature-
sensing robots in their local neighborhood. The key challenge
for gripper robots is to determine the time point at which they
can consider that a collective decision was made and start
acting upon that—i.e., navigating to the selected exit to clear
it. An early response may lead to clearing the wrong exit,
whereas a long waiting time to allow a mature-enough deci-
sion to emerge may lead to late response. Here our collective
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Figure 1: (a) The simulated 2D arena with an example of an ongoing fire, and two exits. Robots are depicted in dark-blue and
lines illustrates their communication links. (b) An example of the evolution of a collective decision and its response.

response is facing a well-known challenge in collective sys-
tems, i.e., speed vs. accuracy Hamann et al. (2014).

To address this challenge gripper robots rely on two thresh-
olds: (i) the opinion representation threshold ω, and (ii) the
opinion duration threshold θ. The robots use a combination
of two conditions to generate the collective response. The
first condition is to have the percentage of neighbors voting
for a particular exit E greater than ω (Ni(E, t) > ω). The
second condition is to have the duration, over which there
is no change in the number of neighbors voting for exit E,
greater than θ (T (E,Ni > ω) > θ). When both conditions
hold, the gripper robot adopts exit E as the one to clear and
starts to navigate towards it.

The swarm performance

We rely on two performance metrics to evaluate the effi-
ciency of the collective decision and response: (i) the exit
probability as a measure of accuracy, and (ii) the conver-
gence time as a measure of speed. The exit probability is the
probability at which the system convergences to the correct
decision/response. In the case of the alternatives with differ-
ent qualities—i.e., best-of-n—, the correct decision/response
is defined in terms of the best alternative, this is the furthest
exit from the center of the fire. When the exits are of the
same quality—i.e. symmetry-breaking—, there is no correct
decision/response. Therefore, the goal is to coverage to one
of the available exits, and to avoid being undecided. Conse-
quently, for symmetry-breaking decisions, the exit probability
describes the probability of converging to any of the exits
with a significant majority and not remain undecided. The
swarm is considered to have been decided for an exit E if a
fraction of robots voting for exit E stabilizes around a limit
that is higher than a defined majority threshold. In our exper-

iments, we set this majority threshold to 0.8. Consequently,
we define the convergence time as the time elapsed from the
beginning of the experiment to the time point at which a robot
fraction of 0.8 agrees, and this fraction remains stable within
an error margin of 0.05.

Results and Discussions
We run all experiments with a population of 200 robots. Each
experiment runs for 4000 simulated seconds and results are
averaged over 30 simulation runs for each configuration. We
investigate the impact of key parameters on the collective
decision and response in terms of their accuracy and speed.
The investigated parameters are (i) the ratio of temperature-
sensing to gripper robots, (ii) the opinion representation
threshold ω, and (iii) the opinion duration threshold θ.

We consider 6 fire setups with different positions as shown
in Figure 2. All setups model best-of-n problems, except for
the configuration in Figure 2f that represents a symmetry-
breaking problem as both exits A and B are at the same
distance from the fire. Consequently, for Figure 2f both exits
have identical qualities, whereas exit B has always a greater
quality for the other best-of-n setups (Figure 2a to Figure 2e).
For best-of-n setups, the difficulty degree of the decision
increases when the position of the fire becomes closer to
the center of the arena (Figure 2a through Figure 2e) as the
qualities of the two exits becomes closer, but not yet equal.
Figure 3a and Figure 3c reflect this increase in the decision
difficulty in terms of the drop in the exit probability and the
increase in the convergence time over the setups Figure 2a to
Figure 2e. Exit probability drops for more difficult decisions,
while it takes a longer time to converge to a decision, and
this applies for both voting strategies: the majority rule and
the voter model. Similar results have been obtained for the



emerging response in terms of its exit probability and the
convergence time across the different difficulty degrees of
the best-of-n problem, see Figure 3b and Figure 3d.

Next, we investigate the frequency at which the response
emerges in the population of the gripper robots agrees with
the decision made by the temperature-sensing robots—i.e.,
free exit A/B when A/B is selected, or free no exit when
the system does not converges. We test different values
of our key parameters: (i) temperature-sensing to gripper
ratios are in the set {3 : 1, 1 : 1, 1 : 3}, which for a popu-
lation of 200 robots maps to the configurations of 150:50,
100:100, and 50:150. (ii) the opinion duration threshold θ
in the set {10, 300, 1800}, and finally (iii) the opinion rep-
resentation threshold ω in the set {0.6, 0.8, 1}. Figure 4a-c
show the agreement frequency when robots vote according
to the voter model, whereas Figure 4d-f show it when robots
vote according to the majority rule. A very interesting re-
sult can be observed in Figure 4a, where for easy decisions
(e.g., a and b on the x-axis) the lowest agreeing frequency is
achieved for the 1:3 ratio, where the relatively small number
of temperature-sensing robots (50), leads to a smaller robot’s
neighborhood, hence it becomes difficult to include a repre-
sentative sample of the collective decision. Consequently,
following the voter model, there is a low probability of select-
ing a robot that adapts the collective decision with a single
pick. This doesn’t happen for larger temperature-sensing
populations. For the majority rule, the agreement frequency
is relatively high for all ratios, see Figure 4d. When increas-
ing the difficulty degree of the decision (along the x-axis),
the agreement increases for both the majority rule and the
voter model. This does not necessarily reflect a high success,
however, it can result from not responding to an undecided
system. Indeed, this high agreement aligns with the drop in
the exit probability in Figures 3a and Figure 3c. Figure 4b
and Figure 4e show how the frequency agreement is impacted
by the opinion duration threshold θ. For both the majority
rule and the voter model, we can notice high disagreement
for large thresholds (θ = 1800). This is due to the small
time left for the gripper robots to converge to any response.
For smaller thresholds, the agreement frequency is relatively
high for both voting strategies. Figure 4c and Figure 4f show
no impact of the opinion representation threshold ω on the
agreement frequency that stays relatively high for all config-
urations and voting strategies.

In the following, we investigate the exit probability and
the convergence time for best-of-n and symmetry-breaking
problems. For the best-of-n setups, we average the results
over the different degrees of difficulty (see Figure 2a-e).

Exit probability
Figure 5a-c show the exit probabilities obtained for the best-
of-n setups, while Figure 5d-f show the exit probabilities
obtained for the symmetry-breaking setups. Figure 5a and
Figure 5d illustrate the robustness of the exit probability

to changes in the ratio of the temperature-sensing to grip-
per robots. Figure 5b shows how large opinion duration
thresholds θ = 1800 result in low exit probability of the
collective response (see narrow bars) regardless of the vot-
ing strategy used. This becomes worse when considering
symmetry-breaking decisions as for θ = 1800 in Figure 5e.
The exit probability appears to be robust to the changes in
the opinion representation threshold ω for all configurations.
Also, for all configurations (Figure 5a-f), the exit probability
for the best-of-n setups is lower (on average 0.8) than for the
symmetry-breaking setup (on average 1). This is because
both exits A and B are correct in the case of a symmetry-
breaking problem, thus the exit probability sums up both
probabilities of selecting exits A and B. This explanation is
confirmed in Figures 5g-i, which shows the exit probability of
each exit (A in blue and B in red) for the symmetry-breaking
setup, and both voting strategies. We can notice that this
probability adds up to 1 over the two exits, so the system
never remains undecided. Finally, for all best-of-n setups, the
majority rule performs slightly better than the voter model,
this aligns with the results in Figure 3a and Figure 3b.

Convergence time
As mentioned above, the convergence time is calculated as
the time at which the swarm (i) achieves a stable state of
coherence (in our case this is 0.8 of the robot population
agrees), and (ii) the swarm remains in that state within a
specific margin of error (we set this to 0.05). Figure 6a-c
show the convergence times obtained for the best-of-n con-
figurations, while Figure 6d-f show the convergence times
obtained for the symmetry-breaking setup. In both Figure 6a
and Figure 6d, although the difference in the performance
of the majority rule and the voter model is relatively small,
there is a tendency to decrease the convergence time while
decreasing the number of temperature-sensing robots, when
using the majority rule. Whereas, the opposite tendency is
observed when using the voter model. For large populations
(3:1), this can be explained by the longer time it takes to have
a majority in the robot’s neighborhood that represents the
collective decision compared to the time it takes to sample
a random neighbor (i.e., voter model) whose opinion agrees
with the collective decision. These dynamics reverse for low
population sizes (1:3), where it becomes harder for a random
neighbor selection (i.e. voter model) to stay stable due to
the high chance of breaking up with that small neighborhood.
Figure 6b and Figure 6e show the impact of the opinion du-
ration threshold on the convergence time, hence the figures
depict only the convergence time of the collective response.
The findings shown in Figure 6e may suggest θ = 1800 as
the optimal value since it leads to the shortest convergence
time. However, one should keep in mind that the time conver-
gence findings should coordinate with the exit probabilities.
This is because a short convergence time can be achieved also
for the cases of undecided system. Therefore, based on Fig-
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Figure 2: Setups with variable fire position: (a) to (e) show a sequence of best-of-n problems with an increasing degree of
difficulty. (f) is a symmetry-breaking problem in which both exits are of equal quality.

(a) (b) (c) (d)

Figure 3: The increasing degree of difficulty for the different best-of-n setups expressed in terms of the exit probability and the
convergence time for the collective decision and response, using the majority rule or the voter model.

ure 5b and Figure 5e the highest exit probability for both the
collective decision and response is achieved for small values
of θ ∈ {10, 300}. For these values, the shortest convergence
time is achieved for θ = 10. Finally, the convergence time
of the collective response seems robust to changes in the
opinion representation threshold ω, similar to the response’s
exit probability.

Conclusions
We studied the emergence of a proper response in parallel
with the decision made in a group of physical agents. We
used a swarm of simulated robots to solve a collective evacu-
ation task. The swarm has two populations: the temperature-
sensing robots, who wander in a 2D arena to explore and
detect ongoing fires, then to select a proper exit, and the
gripper robots, who are responsible for generating the collec-

tive response, i.e., to clear the selected exit. Depending on
the fire and exit positions, we modeled our decision-making
problem as a best-of-n—exits have different qualities—or a
symmetry-breaking—exits have the same quality—problem.
For the best-of-n problem, we investigate 5 setups with an
increasing degree of difficulty. We increased the decision dif-
ficulty by bringing the fire position closer to the center of the
arena, thus making the quality of the two exits closer to each
other. We use two of the widely-studied voting strategies in
collective decision-making processes: the majority rule and
the voter model to investigate the impact of the following
parameters on the collective decision and response: (i) the
ratio of temperature-sensing to gripper robots, (ii) the opin-
ion representation threshold ω, and (iii) the opinion duration
threshold θ. The efficiency of both the collective decision
and response is evaluated using two metrics: the exit proba-
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Figure 4: The frequency at which the collective response agrees with the decision made in parallel, for the best-of-n setups.
(a)-to (c) obtained using the voter model, while (d) to (f) obtained using the majority rule. The x-axis labels indicate the different
difficult degrees of the decision.

bility and the convergence time. Additionally, we used the
agreement frequency to examine to which extent the emerged
response agrees with the collective decision.

Our results have shown that for the best-of-n problems,
the exit probability of both the decision and response drops
with the same factor while increasing the difficult degree of
the decision. This is accompanied by an increase in their
convergence time. We have also shown that the agreement
frequency between the decision and response drops in par-
ticular cases due to the challenge facing the voter model to
select a representative neighbor in a small population of the
temperature-sensing robots and for best-of-n problems. It
also drops in both symmetry-breaking and best-of-n problems
when the opinion duration threshold is set high. Our results
reflect an important role of this threshold on the collective
response, as setting it to high values can lead to a significant
drop in the exit probability of the collective response or to
no collective response at all. Differently, the collective re-
sponse seems to be quite robust to changes in the opinion
representative threshold. Finally, both the majority rule and
the voter model showed lower performance in the cases of
best-of-n than in symmetry-breaking problems. This is due
to the higher exit probability when both exits are correct (i.e.,
symmetry-breaking).
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