Scheduling Access to Shared Space in
Multi-Robot Systems

Yara Khaluf!, Christine Markarian?, Pieter Simoens', and Andreagiovanni
Reina3

! Department of Information Technology, Ghent University, Belgium
2 Department of Computer Science, University of Paderborn, Germany
3 Department of Computer Science, University of Sheffield, S1 4DP, UK
yara.khaluf@ugent.be, chrissm@mail.uni-paderborn.de,
pieter.simoens@ugent.be, a.reina@sheffield.ac.uk

Abstract. Through this study, we introduce the idea of applying schedul-
ing techniques to allocate spatial resources that are shared among mul-
tiple robots moving in a static environment and having temporal con-
straints on the arrival time to destinations. To illustrate this idea, we
present an exemplified algorithm that plans and assigns a motion path
to each robot. The considered problem is particularly challenging be-
cause: (i) the robots share the same environment and thus the planner
must take into account overlapping paths which cannot happen at the
same time; (ii) there are time deadlines thus the planner must deal with
temporal constraints; (iii) new requests arrive without a priori knowledge
thus the planner must be able to add new paths online and adjust old
plans; (iv) the robot motion is subject to noise thus the planner must be
reactive to adapt to online changes. We showcase the functioning of the
proposed algorithm through a set of agent-based simulations.

1 Introduction

Consider the example of a hospital where patients are transported to the required
location within the hospital (e.g., a medical ward or an operating theater) and
this transportation is performed by dedicated robots (e.g., the robots presented
in [I7]). Each patient may have a different medical situation which determines
the urgency of the transportation, thus, a specific temporal deadline. Addition-
ally, in most cases, the arrival of new patients cannot be predicted in advance
but the system must deal with online requests. The robots that operate in this
transportation system share a given environment, thus share the same limited
resources. For instance, a lift or a corridor can be accessed by a limited number
of robots at a time. Finally, robots may not have a deterministic arrival time,
but their motion may be subject to delays (e.g., due to the avoidance of unex-
pected obstacles, such as humans, or due to a noisy robot motion). This example
presents a very challenging problem which requires the robust online planning
of paths for multiple robots with temporal and spatial constraints. In this study,
we investigate this problem and propose an algorithm that deals with such types

2 Y. Khaluf, C. Markerian, P. Simoens, A. Reina

of constraints. The proposed algorithm does not provide the complete solution
that can be directly applied to this example but it is a significant step forward
in such direction which tackles various challenging aspects.

The considered challenges can be ascribed as the core problems investigated in
the two research areas of path planning and scheduling (which we review in
Sect. . The former area studies solutions to plan the sequence of intermediate
locations (configurations) that a robot has to visit (implement) for moving from
a starting position to a final destination. Almost every mobile robot system has
to deal with this aspect and, in fact, this research area has been very active since
a few decades and several solutions have been proposed [3[7]. The latter research
area, scheduling, studies how to plan the times of access to shared resources. So-
lutions in this area typically aim at problems of sharing computational power
[2], while we are not aware of any work that considered the space as the resource
that needs to be scheduled for a shared access under deadline constraints. Our
work lays at the interface of these two areas; the main idea is to get inspira-
tion from solutions in scheduling, and employ and adapt them for multi-robot
path planning with arrival time deadlines. We illustrate this idea by propos-
ing an exemplified time-space planner which we present in Sect. [3] Additional
constraints that make the investigated problem more challenging, while closer
to a real world application, are (i) stochasticity in robot motion and (ii) on-
line requests for new paths. The proposed algorithm is reactive and thus able
to modify online the planned paths in response to delays in the robot motion.
Additionally, the algorithm evaluates online new requests and either rejects or
accepts them. The rejection of a request means that there is no possible plan
that would allow reaching the destination within the given deadline without
cancelling already scheduled paths. In this case, possible solutions are either to
cancel already planned paths, or to extend the temporal deadline. The current
version of our algorithm does not make decisions of this type. Instead, when a
request is accepted, the planner may modify, if necessary, other planned paths
which may include the preemption (i.e., the pausing) of a robot that was moving
to allow another robot with a higher priority to access to a spatial resource. We
perform a set of agent-based simulations to verify the correctness and efficiency
of our algorithm in Sect [d] Finally, we give final remarks on our study in Sect.

2 Related Work

Path planning algorithms can be organised in two macro-categories: deter-
ministic algorithms and stochastic algorithms. Deterministic algorithms are pre-
ferred when agents have few degrees of freedom that determine a limited number
of possible configurations; here, the algorithm can exploit a tractable solution
space and provide provable bounds on the solution quality. Instead, stochastic al-
gorithms are preferred when the solution space to explore is extremely large and
stochastic exploration is the only resort to speed up the planning time. In this
work, we plan paths over a small graph that allows us to implement a determin-
istic algorithm. Among the most known deterministic algorithms for planning

Scheduling the Access to Shared Space in Multi-Robot Systems 3

are Dijkstra’s and A*; and several variants and extensions of these algorithms
have been proposed (e.g., D*, or the jump point search) [87]. Path planning in
multi-robot systems has been often tackled as an optimization problem focused
on finding the shortest collision-free path [TIJIBITTIT6]. Some of these works [1I15]
included priorities to give precedence to some robots in case of conflicting ac-
cess to space. Differently from other works in multi-robot motion planning, our
study takes into account a specific temporal deadline for each robot (thus, for
each path) and hence the planner has to schedule movements both in space and
in time.

Traditionally, real-time scheduling algorithms have dealt with deterministic
execution times such as the worst case execution time [2]. While, stochastic
execution times of tasks have been considered only in a limited number of studies.
Some of them modified existing deterministic algorithms to support variable
execution times, e.g., [I0]. Others have implemented heuristic approaches to
schedule tasks with stochastic execution times on multi-processors [9]. All these
works, similarly to ours, have in common the use of probability distributions
to characterize the stochastic execution time of the tasks. In fact, in our study,
tasks are not pieces of code to execute (as in traditional scheduling), but tasks are
robot motions which are characterized by stochastic execution times. Accounting
for time constraints, such as deadlines, in multi-robot systems has been studied
only in a limited number of works, e.g., [B/6].

Other works tackled the problem of allocating resources in multiagent sys-
tems through various methods such as continuous-time DEC-MDP and DEC-
POMDP—decentralised (partially observable) markov decision processes—e.g.
[18], or distributed negotiation protocols, e.g. [§], or metaheuristic approaches,
e.g., in vehicle routing [I3]. Differently from ours, this class of studies aim to
minimize the costs of resource allocation and therefore solve an optimization
problem. Instead, we assume specific deadlines for each task and the minimiza-
tion of execution time is not required. Solving a minimization problem adds a
level of complexity that is unnecessary for our problem; for example, tasks with
very far deadlines can make a relaxed use of resources. This difference led us to
tackle the problem in a different way, i.e., through a scheduling algorithm.
Another class of problems that presents strong similarities with our study is
railway scheduling [I4/4] where train journeys with given arrival times are
scheduled. As a main difference, our study considers the unpredicted arrival
of new tasks which requires to alter the previous schedule and to determine if
accepting the new task is possible or not. Additionally, as presented in Sect.
we include the notion of link congestion which might allow us to consider the
use of resource by entities external to the system under control (e.g. humans).

3 Time-space Planning Algorithm

The proposed algorithm plans access to a shared space complying with specific
deadlines. We model the environment as a graph in which nodes represent loca-
tions and links represent connections between locations. We assume that a link

4 Y. Khaluf, C. Markerian, P. Simoens, A. Reina

between two locations can be used by only one robot at a time (even if the other
robots move in the opposite or in the same direction, e.g. a lift in a building).
We assume a system composed of N identical robots. A robot may get a task T;
which is characterized by four attributes: the start time a; ¢, the start location,
the destination, and the temporal deadline D;. This information is not known a
priori but becomes available to the planner only when a new task arrives. In our
work we deal with stochastic execution times that can be characterized through
its probability distribution.

When a new task arrives, the algorithm evaluates whether to accept or reject
it through an acceptance testﬂ A task passes the acceptance test if (i) a feasi-
ble path connecting its start location to its destination is found (space planing)
(ii) and if this path can be completed before the deadline expiration and without
violating any deadline of previously-scheduled tasks (time planning). Our algo-
rithm is reactive to unexpected delays in the robot motion which requires the
adjustments of the generated time-space plan. A robot delay is treated as the
arrival of a new task using as start location the location where the unexpected
delay is reported and as a start time the time at which the robot arrived at that
specific location. The acceptance test evaluation is composed of two phases: space
planning and time planning. The goal of this study is to illustrate the utility of
including a time planning phase—based on scheduling techniques—to allocate
spatial resources in a multi-robot system. To highlight and measure the impact
of the time planning phase in a clean way, we want to limit as much as possible
the influence of arbitrary design choices in the space planning phase, e.g., pos-
sible stochastic components. To this end, in the proposed exemplified algorithm
we rely on a complete and deterministic planning solution. This choice allows us
to illustrate the advantages (and drawbacks) of the time planning phase through
a set of experiments on a small size grid environment. In larger environments,
this solution would not be viable and the space planning phase can be replaced
by any stochastic planning algorithm [3I7].

Space Planning. In this phase, the algorithm finds and orders all feasible paths
between the start location and the destination. These paths are ordered by their
weight which is computed combining two measures: (i) the length of the path
and (ii) the congestion of the links along the path. The path length is a deter-
ministic measure that is defined as the sum of the lengths of all links in the path.
The congestion of a link is a stochastic measure—characterised by a probability
distribution—that represents the number of individuals (including robots and
other entities: e.g. humans) that cross the link during a time unit. The conges-
tion measure allows the system to operate on more realistic assumptions with
which the robots are not isolated from other systems operating in the same envi-
ronment. The algorithm uses the expected value of the congestion distribution.
Since we are dealing with known environments, solid distributions for the links

4The term ”acceptance test” or ”schedulability test” is also used in traditional real-
time systems to refer to the decision process of accepting or rejecting a task based on
the ability of scheduling it under the given time constraints.

Scheduling the Access to Shared Space in Multi-Robot Systems 5

congestion can be obtained. These can be time-variant distributions, where the
congestion over links varies over time. Qur algorithm applies the expected value
of the congestion according to the distribution valid during the time of planning.
The algorithm combines these two measures (the path length and the path con-
gestion) to compute a weight Wy, for the j-th path 7; and then order the set of
paths IT according to their weights. The weight W is computed as:

Wr, = alz;, + (1 = a)cq,, (1)

where [, is the length measure and ¢, is the congestion measure of the path m;
and « is a design parameter. The length [, is a normalised value in the range
[0, 1] computed as I, = Ly, /Max(Lr) with Maz(L) the longest path between
any two locations in the environment (we do not consider loops). Similarly, the
congestion ¢, is normalised in the range [0,1] as ¢x; = Cr,/Max(Cy) with
Max(Cy) the maximum congestion over all paths in the environment. The com-
putation of all feasible paths may be computationally expensive. We assume a
static environment, therefore, the set of paths II can be computed offline for all
pairs of start locations and destinations. On the contrary, the congestion measure
may possibly vary over time which requires the online computation of weights
W, and the online ordering of II. Additionally, in case a link has a limited
capacity (i.e., a limited number of robots can use a link at the same time), the
congestion measure must be updated online each time a new path is planned.
In this study, however, we assume that a link has a very limited capacity for
robots: it can be used by only one robot at a time. This assumption allows us
to simplify the algorithm by ordering IT offline and focusing on the scheduling
algorithm to allocate one link at a time to each robot.

Time Planning. During this phase, the algorithm assesses the validity of the
paths in IT sequentially following the ascending order of their weights. The selec-
tion of the parameter o determines the order of the paths. This parameter has
no crucial effect on the performance of the algorithm since we consider an offline
average of the link congestion and the goal is not to select the shortest path,
but a path that respects the task deadline. The time planning phase algorithm
is complete, thus, will evaluate all paths before rejecting a task, therefore, the
choice of the parameter @ may influence only the algorithm speed. A path is
considered walid if it allows the robot to move between the start location and
the destination before the task’s deadline is expired and without violating any of
the deadlines of already accepted tasks. When a valid path m; (j is the order of
the path in the set IT) is found, the task is accepted and the path 7; is assigned
to the task without further checking of the remaining paths in I7.

Each link in the path 7; represents a spatial resource that could be shared among
several tasks that may attempt to access it with time intersections. Hence, we
need to schedule the time access to these links. We do so through the widely-used
EDF (Earliest Deadline First) scheduling algorithnﬂ In traditional real-time

SEDF is a preemptive optimal scheduling algorithm for dynamic priorities. The
tasks’ priorities are updated during the execution of the tasks based on the current
conditions.

6 Y. Khaluf, C. Markerian, P. Simoens, A. Reina

systems, EDF uses the worst-case execution time to check the task’s schedu-
lability and to generate feasible schedules. For multi-robot systems, this is not
trivial because of two challenges to overcome: First, the execution time of individ-
ual links (i.e., the time spent in crossing a link) is stochastic; Second, scheduling
the access to a particular link influences the execution times of all further links
used by the related tasks due to new preemptions which were not planned be-
fore accessing the link. Therefore, we propose the following approach to facilitate
scheduling.

The execution time p;(h) of a link h by robot ¢ on task T; is a stochastic measure
that we model using the normal probability distribution. The time is determined
by two components: the speed and reliability of the robot resulting in the par-
ticular motion time e; of the robot performing T;, and the congestion on the
link Cj,, thus, p;(h) = e; + Cj. The distribution of p;(h) can be approximated
by a normal distribution [I2] according to the central limit theorem. Hence,
pi(h) ~ N(p,0), Vi,h. When links have different congestion, the normal dis-
tribution that models the execution time of each links has a different mean
and standard deviation, nevertheless, it does not influence the computations of
the algorithm. Following the statistical 3-¢ rule of the normal distribution, the
probability that the execution time of link is smaller than p+ 30 is 0.99. Hence,
considering the planning value p;(h) = p+ 30 allows the system to operate with
the probability of having delays with respect of the planned time on link A min-
imized to 0.01 =1 — 0.99. Using this planning value is similar to planning with
the worst-case execution time but considering 99% of the cases.

Evaluating the acceptance of path 7; for task 7T} consists in checking if executing
all links h € m; (i.e. moving through them) complies with the deadline D; and
does not violate the deadlines of the already-scheduled tasks. To make this eval-
uation, the algorithm computes for task T; its ready-to-run time 6;(h) at each
link h, which is the time at which the robot on task T; is ready to move through
link h. The expected ready-to-run time E(6;(h)) on link h is computed as:

E(0:(h)) = E(as(h)) + E(vi(h)) (2)

where E(a;(h)) is the expected arrival time of robot 4 at link ~ and E(v;(h)) is the
expected preemption time of robot ¢ before executing link h. The expected arrival
time E(a;(h)) is computed as the sum of the planned times spent in crossing all
the previous links ¢ € {1,...,h — 1} plus the times spent in preemption on the
previous links:

h—1
E(ai(h)) = aio+ Y (pi(q) + E(3i(q))) (3)
qg=1

where a; ¢ is the start time of task T; and p;(¢) is the estimated motion time
(e.g., pi(q) = p + 30) on link q.

The expected preemption time E(v;(h)) at link h is calculated as a result of
the dynamic priorities assigned by EDF to all the tasks requiring access to this
particular link at the same time. These priorities are assigned based on the links’
deadlines D;(h), h € ;. The deadline D;(h) of link h is computed as a fraction

Scheduling the Access to Shared Space in Multi-Robot Systems 7
of the total deadline D; of task T;:
I,
E(Di(h)) = E(ai(h)) + 7= x (Di — ai,0) (4)

where [j, is the length of link h and I, is the total length of path ;. After
computing the expected deadline of link A for all tasks that are attempting
to access link h with time intersections, EDF assigns them dynamic priorities
based on their computed deadlines (i.e., shorter deadline higher priority). After
assigning the order in which tasks are allowed to execute link h, it becomes
possible to compute the preemption times for the tasks at this link. For task T},
this is given by:

E(yi(h)) = E(REs(h)) + > _ pilq) (5)

where RE(h) is the execution time left for task T —that was running when task
T; arrived at the link A— to finish executing link h. This execution time is zero
when there is no task running over link A when task 7T; arrives. Furthermore,
r is the number of tasks with a higher priority than 7;. After the algorithm
schedules the access to link A and computes the preemption times of all the
tasks attempting to access this link, it updates the arrival times of these tasks
at all the future links of their planned paths. This update may result in new time
intersections which need to be scheduled. While updating the tasks’ preemption
times, the algorithm checks, at each link, whether there is any violation of the
link deadline D;(h):

E(0:(h)) + pi(h) < E(Di(h)) (6)

If a violation appears on at least one of the links, the corresponding path is
rejected. Otherwise, it is accepted and assigned to the robot.

Algorithm Complexity. The computations with the highest complexity are
performed by the algorithm during the space planning phase in which the al-
gorithm iterates over all possible paths between any two nodes. Since we are
dealing with known static environments, all these computations are done of-
fline, with complexity O(mn?). As mentioned above, we selected a complete
(but expensive) space planning algorithm to remove any possible bias coming
from the specific implementation and parameterization of a stochastic path plan-
ning algorithm. However, in case needed, the space planning phase could use a
stochastic algorithm to save time and to generate a smaller set of paths.

Since robots (tasks) arrive online, the computations performed by the algorithm
during the time planning phase are made online. For a given pair of start-end
locations, the algorithm verifies the time constraints of the paths between these
two locations. The worst case for the algorithm is when no path among these sat-
isfies the time constraints (i.e., does not meet the corresponding task’s deadline
without violating previously planned paths). This is when the algorithm rejects
the task after going over all these paths and checking Equation @, which takes
(m—14n-—1!/(m—1)(n—1)! time.

8 Y. Khaluf, C. Markerian, P. Simoens, A. Reina

[Task [Start time[Start Location]Destination]Deadline] Task_[Start time[Start Location[Destination]Deadline]
_“”I‘ask 1‘ 0.1465 ‘ 3 6 ‘ 034 | Task 1| 0.03 3 6 0.78
| Task 2| 0.47 3 7 12.82 o Task 2| 0.13 1 6 15.36
2| Task 3| 0.54 2 7 14.73 5| Task 3| 058 3 7 25.67
Sl Task 4| 075 2 6 72 ©|Task 4| 1.055 1 s 13.53

Task 5| 1.09 2 9 104 Task 5| 167 2 8 17.34
o[Task 1| 0.20 1 8 10.357 | Task 1 1 1 9 10

1.36 3 8 12.90 (] Task 2| 1 1 9 30
2,045 1 6 22.9 2| Task 3 1 1 9 20
2.745 2 7 38.14 Task 4| 1 1 9 10
2.96 3 8 19.1

Flg. 1: The environment considered in our scenario and the four configurations used to verify our

algorithm. Tasks marked with light-gray are those not accepted by the algorithm.

4 Results

We performed a set of experiments to validate and showcase the correctness of
the proposed algorithm, to prove the utility of having a time planning phase,
and to estimate the scalability performance for increasing robot density. We
evaluate the algorithm performance in two planning strategies: safe planning and
risky planning. With safe planning, the algorithm estimates the robot motion
execution time (on a link h) as p;(h) = p + 30 and thus the probability of
missing the planned execution time is only 0.01. Instead with risky planning,
the algorithm computes p;(h) = g+ o and thus the probability of missing the
planned execution time of a link is 0.32. Testing these two strategies allows us
to compare the predicted algorithm performances with our simulations’ results.
For simplicity, we assume that all links have the same length, and hence their
execution times are sampled from a normal distribution with the same mean p
and standard deviation o. The parameter a of Eq. for computing the path
weight is set to 0.5.

4.1 Validation case studies

We first start with verifying the correctness and efficacy of the proposed time-
space planning algorithm for a multi-robot system of N = 5 identical robots
through a set of agent-based simulation experiments. The environment that we
consider in our experiments is depicted in Fig. |1} where robots can move between
9 partially connected locations—a small environment increases the chances of
concurrent requests for a same link. In our simulations, we model the arrival
of tasks using a homogeneous Poisson process with rate of 3 tasks/second. The
tasks are generated with random start locations, destinations, start times, and
deadlines. The start location is a node that is selected randomly between the
nodes on the left side of the grid of Fig. [1| (i.e., either node 1, 2 or 3), while the
destination is selected among nodes on the right plus node 6 (i.e., node 6, 7, 8
or 9). The task deadline D; is randomly selected through a uniform distribution
U(ai,0, 3enr) where eps is the expected execution time of the longest path between
the task’s start location and its destination. We keep p = 0.7 in all experiments
while we vary o, with ¢ = 0.1 for safe planning and o = 0.3 for risky planning.
We let the algorithm to schedule paths for four task configurations, three of which
were randomly generated (config 1, 2 and 3) and one manually chosen (config 4),

Scheduling the Access to Shared Space in Multi-Robot Systems 9

< < <= <
N T F N g L
PR [e s R %2 %° H
BRI : o 87 87 87 o
2o e 2o 2o £s Lo
! N H
g’ﬁ ! ! ! g’ﬁ gs g‘S B s .
T4 | | | ©4 w4 T4 £ S
23l o %o 23 23 23 Lo
5 e 5 5 s o
Zof e =2 F2 52 [
84 g1 g1 g
=0 1 2 3 4 5 6 =0 2 4 6 8 10— o 1 2 3 4 5 6~ 0 2 4 6 8
Time Time Time Time
1 1 1 1
08 08 08 08
e 2 E 2
S] s s
Sos Sos Sos Sos
8] 2 2
8 8 3 8
8os Soa 8oa Soa
S S S S
2] (2] @ 2]
02 02 02 02
o 0 0
Task2 Task3 Task4 Task5 Task 1 Task2 Task3 Task4 Task5 Task2 Task3 Task4 Task5 Task1 Task2 Task3 Task4
Accepted tasks Accepted tasks Accepted tasks Accepted tasks
a) config 1 b) config 2 c) config 3 d) config 4

Fig. 2: Results of the agent-based simulations for the four considered task configurations. (up-
per part) Time-space plans generated by the algorithm (safe planning without re-planning). (lower

part) Success rate for 100 simulation runs in three setups.

see the tables in Fig.[I}] The plan is generated online while we simulate the task
arrival and the robot motion through an agent-based simulator. We execute 100
runs for each configuration and for each planning strategy (i.e., safe and risky).
The upper part of Fig. shows the four plans generated by the algorithm (in safe
planning with no re-planning). As previously defined, more tasks (i.e., robots)
can stay simultaneously on the same node, however, a link can be used by at
most a robot at a time. In the plots, solid (horizontal) lines represent a movement
on a link departing from that node; the change of node is then visualised as a
vertical dashed line of the same color. Preemption (pausing) of a task happens
when the horizontal line is missing.

We can see that the algorithm generates plans that do not let two robots access
the same link concurrently and produces plans where the accepted tasks meet
their deadline. However, we can also see that in some cases (i.e., configs 1 and 3)
the algorithm rejects two tasks (which have very short deadlines). Configuration
4 has been manually chosen and represents the case in which all tasks have the
same start time, start location and destination while have different deadlines.
In this example, we observe the sequential use of the links according to their
respective deadlines. The lower part of Fig. 2| shows the success rate of 100
simulation runs, i.e., the proportion of runs in which the robot has reached its
destination before its deadline. In each experiment, we simulate the motion of
each robot through its planned path, which is generated online as soon as the new
task request arrives. The robot motion time on each link is computed by drawing
a random number from the probability distribution N (i,). When the robot
motion is slower than planned and the robot misses a link deadline (see Eq. (6))),
the algorithm needs to re-plan the task. We execute simulation experiments with
three setups: (i) safe planning without re-planning if deadline are missed (red
bars of Fig. lower part)), (ii) risky planning without re-planning (green bars),
and (iii) risky planning with online re-planning when robot motion has delays
(white bars). The first two setups do not allow re-planning, therefore in case a

10 Y. Khaluf, C. Markerian, P. Simoens, A. Reina

robot does not meet a link deadline, it stops and the task is considered as a
failure. These two setups, without re-planning, allow us to match the predicted
performances of the algorithm with the agent-based simulation results. In fact,
the algorithm that operates in safe planning (i.e., using p;(h) = p + 30 to
estimate the robot motion execution time) predicts that its plans meets each
link deadline more than 99% of the times. Therefore a path that is composed by
k links is expected to have a success rate of 0.99%. The simulation results match
the predictions: the red bars of Fig. lower part) are always above the respective
white overlaying line which marks the lower bound of success. Similarly, the risky
planning algorithm (which uses p;(h) = p + o) has 0.32 probability to fail on
each link and, thus, a path composed of k links will succeed with probability
greater than 0.68%. Although we see a noticeable decrease in the success rate,
the green bars of Fig. (lower part) are always above the predicted lower bound
marks (black overlaying lines). The third set of simulations is performed to
highlight the role of online re-planning. In this case, we allow the algorithm to
re-plan the paths of the tasks which have missed a deadline on a link. While the
algorithm operates with a risky planning strategy, we can appreciate that the
system performance noticeably increases (compared to the no re-planning case,
green bars).

4.2 Effect of time planning

To evaluate the utility of time-scheduling to access shared space, we compared
our algorithm with a simple algorithm that assigns to each task its shortest path.
Rather than applying time planning, it solves conflicts for accessing shared space
resources choosing at random which path to divert (i.e., robots access shared
links in arbitrary order). We use p = 0.7 and o = 0.3 in all our experiments
and we report results for varying number of task requests up to 40. As above,
tasks are generated with random start locations, destinations, start times, and
deadlines. For each data point, we generate 10 different sets of tasks and we
simulate 30 task executions on each plan. The lines connect the average success
rate and the vertical bar indicates the standard deviation of the 300 runs. Fig. [34]
shows the proportion of completed tasks over the number of requested tasks. For
being considered as completed, a task must be first accepted and scheduled by
the planner, then the robot must execute the plan and reach the destination
before the deadline. Instead, Fig. shows the success rate which is computed
as the rate of an accepted task to arrive at destination by its deadline.

The simple algorithm accepts all tasks, however many of them fails (i.e., have
a very low rate in reaching destinations by their deadlines). Instead, the time-
space planning refrains to accept a task that have a probability to miss its
deadline above a certain threshold (which depends on the strategy whether it is
risky or safe). For low number of tasks the performance of the three algorithms
is comparable, however, when the number of tasks increases, our time-space
solution largely outperforms the simple algorithm. Even if this result is expected
because the simple algorithm does not have any strategy to deal with deadlines,
the result displays the effectiveness and utility of the time planning phase.

Scheduling the Access to Shared Space in Multi-Robot Systems 11

2 [—Time-space planning-Safe Strategy o7
2 |— Time-space planning-Risky Strategy 2
it —Only-space planning 008
Bos 2 =
b g 80 R
o 1 . o bt
g 06 § _g)_) 04 <y RS
8 < 2 . x Ty
5 03 +
S 04 M 5 P
< 2 8 et
2 [£ 02 X
o2 8 A
S oot + X Time-space planning-Safe Strategy
& . 0 a I +_Time-space planning-Risky Strategy
0 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40 00 5 10 15 20 25 30 35 40
Number of total tasks (robots) Number of accepted tasks (robots) Number of total tasks
(a) (b) (c)

Fig. 3: Comparison between time-space planning (both with safe and risky strategy) and the simple
algorithm without time planning phase, in terms of the @ proportion of completed tasks and @) task

success rate. Proportion of rejected tasks as a function of total number of requested tasks.

4.3 Scalability on number of tasks

Fig. show how, respectively, the proportion of completed tasks, the success
rate of a task and the proportion of rejected tasks changes as a function of the
number of tasks. The plot of Fig.[3a] shows that the risky strategy completes
a higher number of tasks in average. This results is due to the fact that the
risky planning accepts a larger number of tasks, however presents an higher risk
of failure (with a success rate that converges to 0.68, in agreement with the
1-0 rule). Differently, the safe planning accepts fewer tasks but assures a higher
success rate (around 0.99 according to the 3-¢ rule). Additionally, we can see
that while the simple algorithm accepts all tasks, the time-space algorithm does
not accept anymore tasks above a certain upper bound, visualised through the
interrupted lines (around 25 tasks) in Fig. This upper bound is determined
by both the number of tasks (robot density) and the distance between deadlines.
The idea behind time-space planning algorithms is to make a decision before
the beginning of a task’s execution about the probability of that task to succeed
in meeting its deadline. A task begins only if it has a probability of success
higher than a certain value, otherwise the task is rejected before beginning. This
rejection mechanism has the goal to inform beforehand the user which may look
for alternative solutions rather than missing the deadline halfway through.

5 Conclusions

We present an algorithm to plan paths for multiple robots that move in the
same shared static environment. The algorithm plans new paths online as new
requests arrive and manages possible conflicts if more robots want to access the
same resource (space) at the same moment (time). The novel characteristic of
the proposed time-space algorithm is its capability to plan paths that comply
with temporal deadlines. Additionally, the algorithm is able to adapt online to
unexpected delays in the robot motion which may be caused by internal robot
failures/noise or by external factors that could hamper the normal movement.
Finally, we show through agent-based simulations that the algorithm is able to

12

Y. Khaluf, C. Markerian, P. Simoens, A. Reina

generate plans that respect the given deadlines with predictable performance
levels. Natural extensions of this study consists in experimenting the algorithm
performance in more challenging setups where each link has different congestion
and the system is composed of heterogeneous robots, each with different motion
speeds and reliability. Further extensions would consider dynamic environments
(with time variant topologies), and larger link capacities.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bennewitz, M., Burgard, W., Thrun, S.: Finding and optimizing solvable prior-
ity schemes for decoupled path planning techniques for teams of mobile robots.
Robotics and autonomous systems 41(2), 89-99 (2002)

Buttazzo, G.: Hard real-time computing systems: predictable scheduling algorithms
and applications, Real-Time Systems Series, vol. 24. Springer, Berlin (2011)

. Choset, H.M.: Principles of robot motion: theory, algorithms, and implementation.

MIT Press (2005)

Dorfman, M., Medanic, J.: Scheduling trains on a railway network using a discrete
event model of railway traffic. Transport. Res. B-Meth 38(1), 81-98 (2004)
Khaluf, Y., Birattari, M., Rammig, F.: Probabilistic analysis of long-term swarm
performance under spatial interferences. In: International Conference on Theory
and Practice of Natural Computing, pp. 121-132. Springer, Berlin, Germany (2013)
Khaluf, Y., Rammig, F.: Task allocation strategy for time-constrained tasks in
robot swarms. In: Advances in Artificial Life (ECAL), vol. 12, pp. 737-744 (2013)
LaValle, S.M.: Planning algorithms. Cambridge university press (2006)

Mailler, R., Lesser, V., Horling, B.: Cooperative negotiation for soft real-time dis-
tributed resource allocation. In: Proc. of AAMAS’03. pp. 576-583. ACM (2003)
Manolache, S., Eles, P., Peng, Z.: Task mapping and priority assignment for soft
real-time applications under deadline miss ratio constraints. ACM Transactions on
Embedded Computing Systems (TECS) 7(2), 19 (2008)

Mills, A., Anderson, J.: A stochastic framework for multiprocessor soft real-time
scheduling. In: the 16th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium. pp. 311-320. IEEE Press (2010)

Quottrup, M.M., Bak, T., Zamanabadi, R.I.: Multi-robot planning: a timed au-
tomata approach. In: Proc. of ICRA 2004. vol. 5, pp. 4417-4422 (2004)

Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in
robotics. In: Autonomous robot vehicles, pp. 167-193. Springer (1990)

Toklu, N.E., Gambardella, L.M., Montemanni, R.: A multiple ant colony system for
a vehicle routing problem with time windows and uncertain travel times. Journal
of Traffic and Logistics Engineering 2(1) (2014)

Térnquist, J., Persson, J.A.: N-tracked railway traffic re-scheduling during distur-
bances. Transport. Res. B-Meth 41(3), 342-362 (2007)

Van Den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots.
In: Proc. of IROS 2005. pp. 430-435. IEEE Press (2005)

Wagner, G., Choset, H.: M*: A complete multirobot path planning algorithm with
performance bounds. In: Proc. of IROS 2011. pp. 3260-3267 (2011)

Wang, C., Savkin, A.V., Clout, R., Nguyen, H.T.: An intelligent robotic hospital
bed for safe transportation of critical neurosurgery patients along crowded hospital
corridors. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 744-754 (2015)

Yin, Z., Tambe, M.: Continuous time planning for multiagent teams with temporal
constraints. In: Proceedings of IJCAI 2011. vol. 22, p. 465 (2011)

	Scheduling Access to Shared Space in Multi-Robot Systems
	Introduction
	Related Work
	Time-space Planning Algorithm
	Results
	Validation case studies
	Effect of time planning
	Scalability on number of tasks

	Conclusions

