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This article investigates the use of the integral of linear birth-death processes in the context of analyzing
swarm robotics systems. We show that when a robot swarm can be modeled as a linear birth-death process,
well-established results can be used to compute the expected value and/or the distribution of important
swarm performance measures, such as the swarm activity time or the swarm energy consumption. We also
show how the linear birth-death model can be used to estimate the long-term value of such performance
measures and design robot controllers that satisfy constraints on these measures.
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1. INTRODUCTION

Swarm robotics studies how to design large groups—swarms—of robots that cooperate
to carry out tasks that are beyond the capabilities of the single constituent robots and
that do so without any form of centralized control and without relying on external
infrastructure.

One of the open problems in swarm robotics is how to design and implement robot
swarms with a given guaranteed level of performance. In this article, we use linear
birth-death processes to model robot swarms whose components—robots—have a lim-
ited lifetime. We show how this modeling approach can be used to design robot swarms
with guaranteed levels of performance and to compute long-term swarm-level perfor-
mance measures.

A birth-death process is a continuous-time Markov process where state transitions
are either births or deaths—births increase the state variable by one, whereas deaths
decrease it by one. Integrals of nonnegative stochastic processes arise frequently in
engineering applications. Examples include the estimation of the expected energy
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Université Libre de Bruxelles, Franklin Rooseveltlaan 50, 1050 Brussel, Belgium and Swarm Intelligence
Group, Department of Computer Science, University of Paderborn; email: mdorigo@ulb.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1556-4665/2016/05-ART8 $15.00
DOI: http://dx.doi.org/10.1145/2870637

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 2, Article 8, Publication date: May 2016.

http://dx.doi.org/10.1145/2870637
http://dx.doi.org/10.1145/2870637


8:2 Y. Khaluf and M. Dorigo

consumption by a system subject to random dynamics or the estimation of the cost
associated to the execution of a task whose subtasks have random duration or cost.
Other applications are found in queuing, storage, and inventory systems [Moran
1959]. In biology, integrals of nonnegative stochastic processes are often associated
with the expected resource consumption of groups of animals [Mangel and Tier 1994],
with the expected amount of toxins produced by bacteria [Puri 1967], or with the total
cost of epidemics [Jerwood 1970; Gani and Jerwood 1972]. Results in the context of
potential theory allow for the characterization of certain probabilistic properties of
this type of integral. To the best of our knowledge, integrals of birth-death processes
have not been investigated in the swarm robotics literature.

In swarm robotics, integrals of birth-death processes can be used to study properties
of the system that depend on the number of robots in a certain state when the rate
at which this number varies is known or measurable. For example, one could use the
integral of a birth-death process to estimate the expected duration of an activity or
the total energy consumption of a swarm, as these are properties that generally are
a function of the number of active robots at each timestep. The approach presented
in this article can be used to predict the performance1 of the robot swarm over time
and/or to tune the system parameters during the design phase to achieve a desired
robot swarm performance.

The rest of the article is organized as follows. Section 2 reviews related work in math-
ematical modeling of swarm robotics systems and provides an overview of the literature
on integrals of nonnegative stochastic processes. Section 3 explains how a robot swarm
can be modeled as a linear birth-death process and introduces the basic notations and
definitions. Section 4 gives a closed-form characterization of the integral of the linear
birth-death process. In Section 5, we consider a cleaning task as an application sce-
nario. We define a set of swarm performance measure and show how the presented
model can be used to predict the long-term performance of the swarm and design a
robot form that has a desired expected performance. Section 6 concludes the article.

2. OVERVIEW OF RELATED WORK

The article discusses the mathematical characterization of so-called swarm robotics
functions using the integrals of birth-death processes. Therefore, we organize the re-
lated work into two parts. Section 2.1 discusses works that have investigated the
mathematical modeling of swarm robotics systems. Section 2.2 presents an overview
of the integrals of birth-death processes.

2.1. Mathematical Modeling of Swarm Robotics Systems

Since mathematical modeling of multirobot systems is a complex issue, roboticists have
often opted for simulations and experiments to guide their research (see Brambilla
et al. [2013] for an extensive review of recent work in swarm robotics). The complexity
arising from the interactions of the individuals, the heterogeneity of the environment,
and the drastic simplifications required in mathematical models are among the most
reported obstacles in the way of a rigorous analysis of swarm systems.

Several mathematical models have been nonetheless proposed in the literature. A
first type of model is based on so-called rate equations: a series of coupled differential
equations describing the dynamics of the swarm. Examples are the characterization
of collective behaviors such as aggregation, dispersion, and foraging [Martinoli et al.
1999, 2004; Lerman et al. 2001; Campo and Dorigo 2007; Winfield et al. 2008; Liu and

1Examples of swarm performance measures include the following: the total activity time of the robot swarm,
the total energy consumption of the robot swarm, or the total amount of work carried out by the robot swarm
in the presence of spatial interferences.
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Winfield 2010]. These techniques are used to model the average number of robots in
each of the system states.

A second type of model is spatial models. Examples include the modeling approach of
Hamann [2010], in which Brownian motion and Fokker-Planck equations are used for
the study of space-time continuous models in simple swarm robotics systems. As such
models are specialized toward the modeling of spatial aspects, they are not relevant
for the work presented in this article.

A third type of model based on birth-death processes has been used to determine
the expected time for the robots to cluster [Hereford 2010], to analyze the stability
of robotics controllers for the distributed tracking problem [Shaw and Klavins 2008],
and for the modeling of distributed robot deployment [Mather and Hsieh 2011]. In
these works, probabilistic considerations are derived via ordinary differential equation
(ODE) models, whereas in our work, the analysis is done using the integral of a function
of the birth-death process.

Finally, a variety of specialized models for different swarm behaviors have been
proposed. Winfield and Nembrini [2006] presented a formal method using temporal
logic to specify emergent swarm behaviors. Soysal and Şahin [2006] derived an ana-
lytical model for aggregation using techniques from combinatorics and linear algebra.
Varghese and McKee [2010] proposed a macroscopic model that tackles the problem of
achieving pattern formation in swarm robotics using a complex plane representation,
and Berman [2010] introduced an approach that uses analogies from the domain of
chemical reaction modeling and applied it to swarm task-allocation problems. Quan-
titative analyses of important properties of swarm robotics systems, as well as the
modeling and validation of complex scenarios using formal languages, were discussed
in the work of Gjondrekaj et al. [2012] and references therein. Other works have ap-
plied mathematical modeling to decision-making problems in swarm robotics, such as
Valenti and Hamann [2015] and Hamann et al. [2014]. Mathematical modeling was
also used to tackle the problem of task allocation in robot swarms for time-constrained
tasks [Khaluf et al. 2013, 2014].

The preceding modeling techniques neither allow one to deal with functions of the
number of robots nor the integral over time of these functions. On the contrary, this
is possible with the technique proposed in this article, which allows the modeling of
several measures of swarm performance, as discussed later in Section 5.2, as well as
the frequent situation in which robots have a limited operation time, such as that due
to limited battery life or faults.

2.2. Brief Review of the Literature on Integrals of Markov Birth-Death Processes

Due to its relevance in numerous practical applications, the problem of evaluating
integrals of Markov processes has been extensively studied outside the swarm robotics
literature. An early result introduced in Hernández-Suárez and Castillo-Chavez
[1999] presents a methodology for evaluating the expected value of the integral of
a birth-death process, as well as the expected time to extinction for different kinds
of processes. Pollett [2003] and Pollett and Stefanov [2002] have generalized the
approach described in Hernández-Suárez and Castillo-Chavez [1999] to a wider
variety of models and removed restrictive assumptions. In the case of birth-death
processes, the Laplace transform of the distributions of first passage times and other
important characteristics have been obtained [Ball and Stefanov 2001; Flajolet and
Guillemin 2000; Pollett and Stefanov 2002]. Crawford and Suchard [2012] proposed an
efficient error-controlled algorithm for computing transition probabilities for general
birth-death processes. This promising method constitutes a robust computational tool
to obtain finite-time transition probabilities for birth-death processes that are linked
to the expected value of the process integral over arbitrary functions.
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Fig. 1. State diagram of a birth-death processes with rates λn and μn.

3. MODELING ROBOT SWARMS USING LINEAR BIRTH-DEATH PROCESSES

In this section, we analyze the integrals of swarm robotics functions—that is, the
integrals of functions of birth-death processes that model swarm robotics systems.
These integrals are computed over the time interval during which the swarm is active—
the swarm activity time. A general birth-death process is a continuous-time Markov
process X = {X(t), t ≥ 0} that counts the number of arbitrarily defined elements in
existence at time t ≥ 0. The process is characterized by nonnegative instantaneous
birth rates λn, n ≥ 0, and death rates μn, n ≥ 1. We consider swarm systems in
which these rates are linear functions of the number n of elements (i.e., robots). The
instantaneous transition of the process occurs from state X(t) = n to either state
X(t′) = n − 1 or X(t′) = n + 1.

The activation (birth) and deactivation (death) of the robots in the swarm happens
as follows. At time t = 0, a large number of robots are gathered in a region called nest.
An initial number of these robots is engaged in a certain task and is classified as active.
Over time, active robots may independently stop the execution of the task that they are
performing (i.e., deactivate) for several possible reasons, such as a fault in the robot,
a low battery level, or an internal decision. This happens with rate μn, where n is the
number of active robots. We assume that μn is known or measurable. Similarly, robots
in the nest become active at rate λn.

Because we are considering linear birth-death processes, we have μn = nμ and
λn = nλ, where μ and λ are parameters of the system. As in this article we are interested
in birth-death processes that lead the system to extinction—that is, the state in which
all robots are inactive—we assume that λ < μ.

The number of active robots at time t can be modeled as a linear birth-death process
X(t) on the state space {0, 1, . . .} with transition rates:2

μn = nμ, when n ≥ 1, (1)

λn = nλ, when n ≥ 0. (2)

Figure 1 shows the state diagram of the resulting birth-death process. In this article,
the birth-death process X(t) refers to the number n of active robots at time t, and the
function f (X(t)) can be mapped to any function f (n) of the number n of robots for which
we are interested in computing the integral over time.

Figure 2 illustrates a possible realization of the process over a positive function f (n),
n ∈ {0, 1, . . .}. For the sake of visualization, the function is represented as continuous.
The values of the function f (n) over the states of the chain are represented by levels
of grey and can be thought of, for example, as the amount of energy consumed by a
swarm of size n (with white being higher values). The integral of the resulting process
can be associated to the amount of energy consumed by the swarm from time t = 0
until the complete deactivation of all robots. Similarly, depending on the meaning of
the function f (n), other properties, such as the average number of objects retrieved in a

2From these equations, it is possible to compute the probabilities Pn,n+1 and Pn,n−1 of a unit increase or
decrease in the number n of active robots [Ross 2006]: Pn,n+1 = λn/(λn + μn) = λ/(λ + μ) and Pn,n−1 =
μn/(λn + μn) = μ/(λ + μ).
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Fig. 2. Possible realization of the birth-death process over a linear positive function.

foraging scenario, the average force exerted on an object, or the average area patrolled
by the swarm, can be expressed as the integral of the stochastic process governing the
dynamics of the robots.

Let the initial number of active robots be X(0) = k for some k > 0 and τk denote the
extinction time—that is, the first time the birth-death process reaches state 0 starting
from state k:

τk = inf{t > 0 : X(t) = 0|X(0) = k}, (3)

where the inf of a set S of real numbers is the largest real number that is smaller than
or equal to every number in S.

We are interested in integrals of the function f of X(t) from time t = 0 to the extinction
time τk:

Y f (k) =
∫ τk

0
f (X(t))dt. (4)

When f (n) = n, we will use the notation Y (k) = Y f (k).

4. EXPECTED VALUE OF THE INTEGRAL OF A LINEAR BIRTH-DEATH PROCESS

In this section, we show how to compute the expected value E(Y (k)) of the integral
given in Equation (4). Hernández-Suárez and Castillo-Chavez [1999] propose a basic
derivation of E(Y (k)) based on the study of the stationary distribution for different
birth-death Markov processes. Their first step in the derivation of E(Y (k)) consists of
substituting the transitions to state 0 with transitions to the initial state k (Figure 3).
The process X′(t) obtained in this way is ergodic and referred to as the modified process.
As the modified process is ergodic, when time t → ∞, the state n is visited infinitely
often. In the modified process, the starting state is k and the last state of a cycle is
state 1. Once state 1 is reached, the cycle is terminated and the modified process jumps
again to the initial state k (see Figure 3(b)).

Let us assume that at time t the process has visited state n for r times, and let Sn
denote the sum of the random times Snj , j = 1, . . . , r, the process spent in state n over
its r visits to state n:

Sn =
r∑

j=1

Snj . (5)
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Fig. 3. Process X(t) and its modified process X′(t). The modified process is obtained by substituting the
transition from state 1 to state 0 with the transition from state 1 to state k. Therefore, state 0 is no longer
reachable.

The value of the function f (n) over the r visits to state n when f (n) = n is given by nSn.
Therefore,

Y (k) =
∫ τk

0
X(t)dt =

∑
n

nSn. (6)

When considering the original process X(t), the expected time E(Sn) denotes the time
X(t) spends in state n before X(t) reaches the absorbing state.

Stefanov and Wang [2000] proposed a method to obtain the more general E(Y f (k)).
Their method relies on a state-space truncation argument. When the integrand function
f (n) of the process X(t) is taken into account, similarly to Equation (6), one can write
the following:

Y f (k) =
∞∑

n=1

f (n)Sn(k), (7)

where Sn(k) denotes the total time spent in state n when the initial state is k. We denote
by τm

k , Y m(k), and Sm(k) the counterparts of τk, Y (k), and S(k), where the state space
Sm is truncated at m ≥ k (this corresponds to considering a maximum of m elements).

Then we can write the following:

E
(
Y m

f (k)
) = E

(
m∑

n=1

f (n)Sm
n (k)

)
. (8)

Using the following result discussed in Stefanov [1995],

E
(
Sm

n (k)
) =

k∑
i=1

Hi(n)
μi

, (9)

where

Hi(n) =
⎧⎨
⎩

λiλi+1λi+2...λn−1
μi+1μi+2...μn

1 ≤ i < n
1 i = n
0 i > n,

(10)
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Fig. 4. Expected value of the integral of a birth-death process with λ = 0.5 and μ = 1 over the function
f (n) = 2n2 − 40n.

with n ≤ m, we can rewrite Equation (8) as follows:

E(Y m
f (k)) = E

(
m∑

n=1

f (n)Sm
n (k)

)
=

m∑
n=1

f (n)E
(
Sm

n (k)
) =

m∑
n=1

f (n)
k∑

i=1

Hi(n)
μi

=
k∑

i=1

1
μi

m∑
n=i

f (n)Hi(n). (11)

When the state space is infinite, thanks to the monotone convergence theorem [Yeh
2006], Equation (8) can be generalized to the following:

E(Y f (k)) = lim
m→∞ E

(
m∑

i=1

f (n)Sn(k)

)
, (12)

subject to

E

(
m∑

n=1

f (n)Sn(k)

)
≤ E

(
Y m

f (k)
) ≤ E(Y f (k)). (13)

The first inequality is due to the smaller state space: as the state space is truncated to
m ≥ k, Sm

n (k) � Sn(k). The second inequality holds when n0 > 0 exists such that f (n)
is nondecreasing for n ≥ n0 [Stefanov and Wang 2000] (note that this assumption can
be removed by using results of potential theory [Pollett 2003]). In view of Equation (8)
and Equation (13), the following proposition holds.

PROPOSITION 4.1 [STEFANOV-WANG]. The expected value E(Y f (k)) of Y f (k) where the
birth-death rates are λi and μi has the following closed form expression:

E(Y f (k)) =
k∑

i=1

(
1
μi

∞∑
n=i

f (n)Hi(n)

)
. (14)

Figure 4 shows the expected value of the integral of a birth-death process with rates
λi = 0.5 and μi = 1 over the test function f (n) = 2n2 − 40n. The closed form solution is
compared to the average obtained with a Monte Carlo simulation over 1,000 runs.
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Fig. 5. Swarm robotics scenario. (a) Initial state: 30 robots are randomly uniformly positioned in the working
arena. (b) Snapshot at 35 simulation steps: white trails are areas of the arena that have been cleaned by the
robots.

5. AN APPLICATION SCENARIO

In this section, we illustrate how the linear birth-death modeling approach of Equa-
tions (1) and (2) can be used to model a robot swarm that performs a cleaning task.3
We use Equations (4) and (14) to compute several different swarm performance mea-
sures: the swarm activity time, the total swarm energy consumption, and the total area
cleaned by the swarm during the swarm activity time.

5.1. Cleaning Task

Initially, all robots are active and are uniformly randomly distributed over a 4 × 4 m2

closed working arena (Figure 5(a)). The robots move randomly in the working arena
with a speed of 5cm/s while avoiding collisions with nearby robots.

An active robot can be in either working state or in collision avoidance state. A work-
ing robot moves from the working state to the collision avoidance state when spatial
interferences occur. While in the collision avoidance state, the robot stops cleaning for
whatever time necessary to avoid the collision.

Over time, robots may require maintenance,4 in which case they move to the mainte-
nance area—2 × 4 m2 (see Figure 5(a))—and become inactive. This happens with rate
μ for each robot.

When a robot becomes inactive, it invites one of the robots in the maintenance area
to become active. This invitation is accepted with a rate λ = μλ′, where λ′ is a system
parameter. Although in theory it could be λ′ = 1, in practice the value of λ′ will be lower,
as the invited robot might be busy with another task or the message might become lost.
Figure 6 illustrates the robot’s states and its activation and de-activation dynamics and
rates.

5.2. Swarm Performance Measures

In this section, we define the swarm performance measures in which we are inter-
ested: the swarm activity time, the total swarm energy consumption, and the total
area cleaned by the swarm. These swarm performance measures are computed as the
integral over the swarm activity time of the respective swarm robotics functions:

3Instructions for downloading the software are available at: http://iridia.ulb.ac.be/supp/IridiaSupp2015-008/
index.html.
4For example, because of faults or low battery level.
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Fig. 6. Activation and deactivation dynamics and rates.

(1) Swarm activity time—the constant case: f (n) = 1. When the swarm robotics func-
tion is f (n) = 1, the integral of Equation (4) reduces to Y f (k) = ∫ τk

0 dt and repre-
sents the swarm activity time—that is, the time interval from t = 0 up to the time
t = τk—when all robots become inactive (extinction).

(2) Total swarm energy consumption—the linear case: f (n) = cn. When the swarm
robotics function is f (n) = cn, where c is a constant, the integral of Equation (4)
reduces to Y f (k) = ∫ τk

0 cndt. Under the hypothesis that each robot consumes c
energy units per time unit, this integral measures the energy consumed by the
swarm during its activity time [0, τk].5 Note that when c = 1, the integral can also
represent the total swarm activity time—that is, the sum of the activity times of
each robot in the swarm.

(3) Total area cleaned by the swarm—the nonlinear case. In the more general case,
the swarm robotics function used in Equation (4) is not linear in the number
of active robots. Additionally in this case, the integral can be computed using
Equation (14). In our cleaning scenario, we are interested in the performance of the
swarm measured by the area the robots are able to clean during the swarm activity
time. To define the function f (n) that gives the amount of work performed when
n robots are active—that is, the area cleaned in all time intervals when exactly
n robots were active—we need to take spatial interferences into consideration.
However, interferences are a complex phenomenon that depends not only on the
physical characteristics of the robots but also on the type of task, on the geometry
of the environment, and on the strategy adopted by the robots. Therefore, we use
physics-based simulations6 to estimate the function f (n) for different values of n.
To do so, we first run simulations for a selected set of values of n and then use the
obtained results to estimate the function f (n).

For each value of n ∈ [50, 150], we run 30 simulations and compute the average
of the total area cleaned by the active robots (Figure 7).

Collision avoidance maneuvers cause performance to decrease when the number
of robots increases. This negative effect on the performance of the system due to
spatial interferences is shown in Figure 7, in which the average area cleaned by
the swarm increases with the number of active robots until the swarm size reaches
93 active robots. Then it starts to decrease because of spatial interferences. The

5Another example of the use of the swarm robotics function f (n) = cn is when c represents the number
of seeds dropped per time unit by each robot in an agriculture application. In this case, the integral of
Equation (4) represents the total number of seeds dropped by the robot swarm during its activity time.
6We use the ARGoS simulator, a state-of-the-art discrete-time physics-based simulation framework that can
simulate swarms of robots at different levels of detail [Pinciroli et al. 2012].
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Fig. 7. Average area cleaned by the robot swarm. The red crosses represent the average area cleaned by
n active robots in 1s, where n varies between 50 and 150 and the average is obtained via 30 physics-based
simulations using the ARGoS simulator. The black solid line is a third-degree polynomial interpolating the
red crosses.

swarm robotics function f (n) representing the area cleaned by n active robots is
obtained by interpolating the data of Figure 7 with a polynomial of degree 3:

f (n) = 0.00000000033583n3 − 0.00000047651n2 + 0.000079576n+ 0.00012122. (15)

5.3. The Model as a Micro-Macro Estimation Tool

In this section, we show how the presented model can be used as a micro-macro estima-
tion tool. In other words, we consider the situation in which the values of the λ and μ
parameters of the birth-death process are given, and we show how to use Equation (14)
to compute the expected value of the integral of the swarm robotics functions.7

We assume that robots are leaving the working arena and stop cleaning with a rate
μ = 0.1. The leaving robots send messages to inactive robots so as to activate them.
The activation messages succeed in activating robots with a rate λ = 0.5μ. This rate is
measured using the physics-based simulations performed in ARGoS.

Figure 8 shows the results of a typical simulation run of the cleaning task. Figure 8(a)
shows the number of robots that are leaving the cleaning task over time (solid line)
and the number of robots that are joining the task to substitute the leaving robots
(dashed line)—note that the number of robots joining the task is approximately half
the number of robots leaving the task. Figure 8(b) shows the number of active robots
over time, starting from time t = 0, when the initial number of robots is 100, until the
extinction time.

Figure 9(a) through (c) report the three swarm performance measures obtained using
Equation (14) and via simulations. All graphs show that there is a very good match be-
tween the performance estimated using our modeling approach (i.e., via Equation (14))
and the performance computed using simulations.

5.4. The Model as a Macro-Micro Designing Tool

In this section, we show how the presented model can be used as a design tool when
we want the robot swarm to have a certain level of performance on average. This can

7Note that for the constant and linear swarm robotics function cases, it is possible to obtain an exact
characterization of their integrals in terms of their probability distribution (see Appendix A).
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Fig. 8. Typical simulation run of the cleaning task. (a) Number of robots leaving the cleaning task (solid
line) and number of robots joining the cleaning task (dashed line). (b) Number of active robots over time.

Fig. 9. Comparison between the swarm performance estimated using Equation (14) and computed using
simulations. (a) Swarm activity time—simulation results are the average of 100 runs of Monte Carlo sim-
ulation. (b) Total swarm energy consumption—simulation results are the average of 100 runs of Monte
Carlo simulation. (c) Total area cleaned by the swarm—simulation results are the average of 50 runs of
physics-based simulations in ARGoS.
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Fig. 10. Expected total area cleaned by the swarm, computed using Equation (14), and the total area cleaned
by the swarm obtained as the average of 50 runs of the ARGoS simulator.

be done by using the model to tune the parameters of the birth-death process. Here
we consider the case in which the death rate μ is fixed and the birth rate λ is the
controllable parameter that we can tune. We use as an example the nonlinear swarm
robotics function that represents the total area cleaned by the robots during the activity
time of the swarm. Figure 10 shows the area of the working arena that was cleaned by
a swarm of initial size n = 50 robots and with a varying birth rate λ ∈ [0.1μ − 0.8μ].
The graph shows that when the birth rate increases, the amount of work performed
during the swarm activity time increases. A user can use the results of Figure 10 to
select a birth rate for which the robot swarm has the required average performance.

Another parameter that can be tuned to influence the performance of the system
is the initial number of robots assigned to the task. Figure 9(c) shows how changing
this parameter can influence the cleaned area while keeping the birth and death rates
fixed.

6. CONCLUSIONS

In this article, we investigated the use of linear birth-death processes for the prob-
abilistic modeling of swarm robotics systems. In many swarm robotics applications,
the number of robots in a particular state or engaged in a particular task consti-
tutes the main descriptor of the state of the swarm. We have shown that when the
evolution in time of this number can be modeled using a linear birth-death process,
well-established results can be applied to characterize the integral of swarm robotics
functions that describe aspects of the swarm activity that we want to measure. These
measures include, for example, the expected total swarm energy consumption or the
expected total amount of work performed by the swarm.

In this context, we reviewed theoretical results for the evaluation of the expected
value of the integral of swarm robotics functions for linear birth-death processes and
provided references to relevant literature. To illustrate these approaches, we considered
examples in which the dynamics of the activation and deactivation of robots can be
modeled as a linear birth-death process, and we showed that our modeling approach
can be used both to predict the robot swarm performance and as a tool to design a robot
swarm that has an expected performance.

Future work will consider the use of the results presented in this article to guide
the development of individual robotics controllers so as to obtain swarm level specific
performance guarantees.
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APPENDIX A: EXACT CHARACTERIZATION OF THE INTEGRAL OF SWARM
ROBOTICS FUNCTION

In this appendix, we briefly show how to compute the exact value of Equation (4) for
the particular cases of swarm robotics functions f (n) = 1 and f (n) = cn.

A1: The f (n) = 1 Case

The probability density function of
∫ τk

0 dt can be computed using passage time proba-
bilities. In fact, for linear birth-death processes, closed-form solutions for the passage
time probabilities Pm,n(t) = Pr(X(t) = n|X(0) = m) are available [Bailey 1990]:

Pm,n(t) =
min(m,n)∑

j=0

(
m
j

)(
m+ n − j − 1

m− 1

)
αm− j

β−n+ j (1 − α − β) j, (16)

where

α = μ(e(λ−μ)t − 1)
λe(λ−μ)t − μ

and β = λ(e(λ−μ)t − 1)
λe(λ−μ)t − μ

.

The absorption probability as a function of time, from an initial state m to the
absorbing state 0, is [Bailey 1990]:

Pm,0(t) =
(

μ(e(λ−μ)t − 1)
λe(λ−μ)t − μ

)m

. (17)

The probability density function of the swarm activity time is obtained from Equa-
tion (17) [Bailey 1990]:

fm,0(t) = mμ(e(λ−μ)t − 1)m−1μ(λ − μ)2e(λ−μ)t

(λe(λ−μ)t − μ)m+1
. (18)

Figure 11 shows the probability density function of the swarm activity time computed
using Equation (18), as well as numerical results obtained via 1, 000 Monte Carlo
simulations.

Fig. 11. Probability density function of the total swarm activity time when the swarm is modeled as a linear
birth-death process. Solid line: as computed with Equation (18); histogram: 1, 000 Monte Carlo simulations.
Initial number of active robots = 20, λ = 0.6, μ = 1.
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Fig. 12. Probability density function of the total swarm energy consumption when the swarm is modeled
as a linear birth-death process. Solid line: as computed with Equation (19); histogram: 1, 000 Monte Carlo
simulations. Initial number of robots = 20, λ = 0.6, μ = 1, c = 1.

Fig. 13. (a) Probability that the total swarm energy consumption is lower than 50 energy units as a function
of the activation rate λ (μ = 1). (b) Probability density functions of the total swarm energy consumption for
different initial swarm sizes.

A2: The f (n) = cn Case

The probability density function of
∫ τk

0 cndt can be computed using the inverted Laplace
transform [Pollett and Stefanov 2002]. In the case of linear birth-death processes and
of energy consumption per time unit c = 1, the inverted Laplace transform is given by
Pollett [2003]:

dPn(E ≤ x) = n
x

e−(λ+μ)x(μ/λ)n/2 In(2x
√

λμ)dx, (19)

where E = ∫ τk

0 ndt and In(z) is the modified Bessel function of the first kind.
Figure 12 shows the probability density function of the total swarm energy con-

sumption. Equation (19) can be employed for the determination of the parameters that
guarantee a total swarm energy consumption under a given critical level with a certain
probability. For example, Figure 13(a) shows the probability as a function of the activa-
tion rate λ that the total energy consumed by the swarm is lower than 50 energy units.
Different characteristics concerning the swarm energy consumption, such as the range
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of this consumption, can be obtained a priori for any initial swarm size. Figure 13(b)
reports the probability density function of the total swarm energy consumption for
different initial numbers of active robots.
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