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Abstract In this paper, we show that non-uniform distributions in swarms of

agents have an impact on the scalability of collective decision-making. In partic-

ular, we highlight the relevance of noise-induced bistability in very sparse swarm

systems and the failure of these systems to scale. Our work is based on three de-

cision models. In the first model, each agent can change its decision after being

recruited by a nearby agent. The second model captures the dynamics of dense

swarms controlled by the majority rule (i.e., agents switch their opinion to comply

with that of the majority of their neighbors). The third model combines the first

two, with the aim of studying the role of non-uniform swarm density in the per-

formance of collective decision-making. Based on the three models, we formulate a

set of requirements for convergence and scalability in collective decision-making.

Keywords bistable system, swarm density, noise, collective decision-making,

nonuniform spatial distribution

1 Introduction

One of the key advantages of swarm intelligence is scalability. A swarm system

is scalable because it “can maintain its function while increasing its size without

the need to redefine the way its parts interact” [5]. The selection of the modeling

technique used to analyze scalability properties covers a pivotal role. Assuming the

limit N →∞ for the swarm size N allows for the definition of concise mathemat-

ical models, such as population models (e.g., rate equations [26, 24], birth-death

processes [22]). However, the predictions of these models can differ qualitatively

from the dynamics of actual finite-size systems [40, 29, 4]. For example, a finite-size

system can show variance due to errors that result from the drawing of a finite

number of samples from a stochastic population. Such effects are difficult to rep-

resent in a population model [42]. When investigating properties of scalability in

collective systems, however, we have to consider finite-size effects as well as effects

of noise, which can be similar to those caused by sampling errors. For example,

agents may have communication errors due to a noisy communication medium. As

a consequence agents may act sometimes erroneously. The effect of that behavior

is similar to finite-size effects and increases the variance in the observed system

states.



The Impact of Agent-Density on Scalability in Collective Systems 3

In this paper, we focus on the scalability of self-organizing collective decision-

making systems, a fundamental process in autonomous swarm systems. We study

which features influence the scalability of this process, including the effects of

swarm density, noise, and non-uniform spatial distributions of agents. First, we

show how a simple model of noise-induced bistability [29] is unable to scale in a

very sparse distribution of agents. Next, we show a modification of this model that

manages to reach a collective decision through the majority rule. This model effec-

tively corresponds to a dense distribution of agents. Finally, we combine the two

models to investigate a continuum of swarm densities and formulate the require-

ments to ensure scalability in collective systems. The paper is organized as follows.

In Section 2, we discuss related work. Section 3 introduces a set of fundamental

definitions. In Section 4, we present the models that we study and that represent

different swarm densities: very sparse, sparse, dense. Our results are presented in

Section 5. In Section 6 we introduce density defined independent of noise and we

show the dynamics of the system while moving from an undecided system to a

decided one. We verify our findings using agent-based simulations in Section 7 and

the paper is concluded in Section 8.

2 Related work

A number of scientific studies report on decision-making in ants [3, 25], honey-

bees [36, 39], cockroaches [12], locusts [45], social spiders [34], and robots [11, 28,

41, 42, 44]. In the following we focus on binary decision-making problems that can

be viewed as bistable systems. Bistable systems spend most of their time in one of

two stable states while transitions between stable states occur rarely in response

to external input, such as external noise.

Traditionally, bistable systems were modeled deterministically [9]. However, a

recently discovered mechanism for bistability in the context of chemical systems

has triggered a new track of research. There are chemical systems that behave qual-

itatively differently if there are only few molecules (i.e., low concentration or low

density) [40, 29]. In these systems, the very existence of bistable states is induced

by noise and consequently they cannot be modeled with standard techniques. Re-

cently, Biancalani et al. [4] have made an effort to transfer the knowledge about
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noise-induced bistable systems from the domain of chemistry to the domain of

swarm intelligence. They investigate foraging in ants as a bistable system with an

abstract model (also cf. [16]) that was reported before in the context of chemical

reactions by Ohkubo et al. [29]. We use the model of Biancalani et al. [4] as a

starting point to investigate scalability issues in collective systems with respect to

swarm size, swarm density, noise, and finite size effects.

Bistable systems and the relevance of noise as well as of negative feedback pro-

cesses have already been investigated in the context of swarm intelligence. Similar

to our approach, Dyson et al. [7] propose a minimal model for the collective mo-

tion of locust swarms based on the model given by Biancalani et al. [4]. Dyson

et al. consider different swarm densities by deriving drift and diffusion coefficients

of a stochastic differential equation as a function of the swarm sizes. This is done

by starting from experimental data and fitting the reaction rate coefficients that

correspond to interactions between two or three agents (we refer to as second- and

third-order interactions). In contrast to our study, they are investigating combi-

nations of second- and third-order interactions for a few given measurements in a

phenomenological way, while we investigate the continuum of swarm densities be-

tween second- and third-order interactions in the context of node degree variance

in a network of agents.

Meyer et al. [27] highlight the influence of noise for achieving adaptivity in

the foraging behavior of ants. They also show that certain system features are

not captured well with the available mathematical models. Their investigation

of the y-shaped bridge experiment as a binary decision-making problem shows

that convergence to the shortest path as predicted by the applied mathematical

models only holds if both choices have been presented to the colony at the same

time. However, if the inferior choice is presented first, the colony sticks to that

solution and does not adapt to the better path. This problem is solved by noise in

the swarm’s decision-making behavior: noise increases the explorative behavior of

the system which is a necessary condition to achieve adaptiveness. Dussutour et

al. [6] show the importance of noise in the behavior of ants that efficiently choose

food sources in dynamic environments. They argue that a certain level of noise

serves an important functional role in self-organized decision-making. Gruter et

al. [10] investigate the role of negative feedback due to crowding in a foraging
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scenario both experimentally and with an agent-based simulation model. They

show that negative feedback leads to an equal distribution of foragers in symmetric

environments and allows the majority of the colony to quickly reallocate to the

best source in dynamic environments. Seeley et al. [37] focus on the influence

of stop signals in collective decision-making processes. They provide an analytic

model that shows the effect of cross-inhibition. The negative feedback by stop

signals increases the reliability of the decision-making process because it solves

the problem of deadlocks and triggers bistable distributions (cf. [31, 32]). In [23]

the authors investigated the role of positive/negative feedbacks in addition to noise

in the emergence of self organization and collective decision-making.

3 Preliminaries

In this section, we specify terms, such as swarm density, agent interactions, well-

mixed systems, and noise. We introduce appropriate definitions to clarify our mod-

els and assumptions.

3.1 Swarms modeled as undirected graphs

A given spatial distribution of agents induces a graph based on neighborhood

relations between pairs of agents. Two agents are neighbors if they perceive each

other. Even though the range of existing sensors, such as infrared, radio, or sound

sensors, depends on multiple features and is complex to model, in this paper, we

use the simple unit disc model, which suffices for our purposes. We assume that

sensing is pairwise symmetric, that is, if agent i senses agent j, then agent j also

senses agent i. Agents perceive each other and establish a communication link once

their distance is below a defined sensor range u. Based on these pairwise relations,

we can construct an undirected graph with a node for each agent and an edge

for each pair of neighboring agents. The neighborhood size and the node degree

of a particular agent are the number of agents within its communication range u

excluding the agent itself. The group size also includes the considered agent and

is defined as the neighborhood size plus one.
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3.2 Swarm density

We define three density classes for swarms. Our definition of density is based

exclusively on node degrees, that is, the number of neighbors an agent can interact

with1. The node degrees are determined by the spatial distribution of agents. In

swarm robotics, the spatial distribution is generally a non-trivial result of the

swarm behavior. We consider a static network model as an example here—the well-

known Poisson Point Process (PPP) for which Poisson-distributed node degrees

are generated [38]. The probability of finding a node of degree k is given by

P (X = k) = e−λ
λk

k!
, (1)

where λ is defined as the expected node degree. The Poisson distribution describes

directly the above mentioned variance in the node degree due to the uniform

random distribution of points. Here, we focus on particular swarm densities that

create three different node distributions depending on whether most nodes have a

node degree of one or less, two or less, or two and more. We define the probabilities

Pk61 = P (X = 0) + P (X = 1), (2)

Pk62 =
∑
k62

P (X = k), (3)

Pk>2 =
∑
k>2

P (X = k). (4)

If Pk61 > 0.5, we consider the system as a very sparse system, if Pk62 > 0.5, we

consider the system as a sparse system, and for values of Pk>2 > 0.5, we consider

the system as a dense system. A similar terminology is also used by Yates et al.

[45] in a study of motion alignment in locusts which reports a connection between

the frequency of transitions between stable states and the swarm density.

Fig. 1 shows three examples of node degree distributions based on Poisson dis-

tributions (eq. 1). These examples represent the three density classes as defined

above (very sparse, sparse, dense). A very sparse system has a majority of agents

either interacting with only one other agent (second-order interaction, node de-

1 In appendix A, we provide an alternative approach to define swarm density based on areas.
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Fig. 1: Three examples of node degree distributions following Poisson distributions
(eq. 1). With λ = 0.9 we have Pk61 > 0.5 which indicates a very sparse system.
With λ = 1.9 we have Pk62 > 0.5 which indicates a sparse system. With λ = 3 we
have Pk>2 > 0.5 which indicates a dense system.

gree k = 1) or none (node degree k = 0). A sparse system has a majority of agents

either interacting with none, one, or two (third-order interactions) other agents

(node degree k 6 2). A dense system has a majority of agents interacting with two

or more agents (node degree k > 2).

3.3 Second-order versus third-order interactions

We consider second-order interactions (node degree k = 1) and third-order in-

teractions (node degree k = 2) as qualitatively different interaction patterns. A

third-order interaction cannot be reduced to two second-order interactions because

we assume reactive agents who do not keep memory of the past. Every agent must

choose between two opinions, which we refer to as A and B. When two agents

with different opinions meet, the symmetry is broken by either of the two at ran-

dom. When three agents with differing opinions meet, a simple rule for agreement

is for all the agents to pick the majority opinion. The convergence speed of the

majority rule increases for an increasing number of agents involved in the decision

process [42].
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3.4 Well-mixed systems

A well-mixed system does not refer directly to the spatial distribution of agents

and their absolute positions. Instead, with the term “well-mixed”, we refer to the

fact that each agent has the same probability to interact with any other agent

in the swarm. The probability for an agent i to interact with an agent j is equal

for all possible pairs of agents (i, j). More specifically, we refer to the absence of

spatial correlations between agents with particular internal states. A well-mixed

system has variance in its node degrees but the position of agents is independent

of the agent’s index or state.

3.5 Noise

In general, we can distinguish between two kinds of noise: intrinsic noise and ex-

trinsic noise. Intrinsic noise originates from internal processes of the system, while

extrinsic noise results from external factors, for example, from the environment.

In this paper, we consider only intrinsic noise and we further categorize it into

agent and interaction noise. In our study, agent noise is the result of spontaneous

switching and represents an autonomous decision of the agent to change its inter-

nal state. Interaction noise is due to agents sampling the global system state based

on their local neighborhood. In the following analysis, we focus on the effects of

noise that makes agents switch state spontaneously. We refer to this noise with the

term ‘agent noise’ while we use the term ‘finite-size effects’ to refer to interaction

noise.

4 Models of very sparse, sparse, and dense swarms

In the following, we present three models of collective decision-making for very

sparse, sparse and dense swarms, as described in Section 3.2. The second-order-

interaction model represents interactions in very sparse swarms. The third-order-

interaction model represents interactions in dense swarms. The intermediate model

represents interactions in sparse swarms and combines the two other models to in-

vestigate a transition from second-order-interaction swarms to third-order-interaction
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swarms. We choose chemical reactions as notation for these models and, in contrast

to Biancalani et al. [4], we use discrete-time Markov chains to model our systems

since they allow for a simpler derivation and analysis than stochastic differential

equations.

4.1 The second-order-interaction model for very sparse swarms

Based on the Ohkubo system [29], Biancalani et al. [4] define a model of foraging

in ants to investigate bistability. In their model, two food sources are present, and

Xi denotes the number of ants foraging from source i. Recruitment is modeled such

that ants foraging from one source recruit ants foraging from the other source. Ants

are assumed to meet randomly in pairs. If they are foraging from different food

sources—with equal probability—one of them switches to forage from the source

of the other. This behavior is seen as autocatalytic recruitment [4] in analogy to

chemical bistable systems [29]. In addition, the system is subject to agent noise,

which is implemented as spontaneous switching. We model the foraging system

using the chemical reaction network

X1 + X2
r−−−→ 2 X1, (5)

X2 + X1
r−−−→ 2 X2, (6)

X1
ε−−−→ X2, (7)

X2
ε−−−→ X1, (8)

where the constants r and ε are the reaction rate coefficients, respectively, r for

recruitment and ε for spontaneous switching. Whenever ants with different sources

meet, either reaction 5 or 6 is executed, with equal probability. We argue that this

model can be interpreted as a model for very sparse swarms.

In contrast to Biancalani et al. [4], we use a Markov chain model to compute

stationary distributions and mean first passage times (MFPT) of the second-order-

interaction model. First, we introduce the swarm fractions x1 and x2 to represent

the fraction of agents in a swarm of size N for each of the two types X1 and X2 (x1+

x2 = 1). The use of swarm fractions allows us to derive the transition probabilities

under the continuous limit approximation (see Biancalani et al. [4]). The transition
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Fig. 2: Markov chain to model the collective decision-making system.

probabilities of the chemical reaction network (eqs. 5 to 8) are

T1 ≡ T
(
x1 +

1

N
, x2 −

1

N

∣∣∣∣x1, x2) = rx1x2 + εx2,

T2 ≡ T
(
x1 −

1

N
, x2 +

1

N

∣∣∣∣x1, x2) = rx1x2 + εx1, (9)

for r 6 1 and ε 6 1, T1 is the probability of observing a switch from X2 to X1 and

T2 is the probability of a switch from X1 to X2 [4].

We define a Markov chain of N+1 states and their respective transitions under

the assumption of observing only one switch at a time as shown in Fig. 2. The

non-zero transition probabilities of the defined Markov chain are given based on

the transition probabilities in eq. (9):

pi,i+1 = rx1x2 + εx2,

pi,i−1 = rx1x2 + εx1,

pi,i = 1− (rx1x2 + εx2 + rx1x2 + εx1), (10)

with pi,i+1 defining the probability of transitions that increase the number of

agents of type X1, pi,i−1 defining the probability of transitions that decrease the

number of agents of type X1, and pi,i giving the probability of staying in the

current state.

4.2 The third-order-interaction model for dense swarms

As a high-density complement to the second-order-interaction model, we define

a model that requires three ants to meet at a place for recruitment [14]. In this

model, the majority rule [8, 1, 28, 42] can be used to convince the minority forager
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to change its opinion. We model the foraging system using the chemical reaction

network

2 X1 + X2
r−−−→ 3 X1, (11)

X1 + 2 X2
r−−−→ 3 X2, (12)

X1
ε−−−→ X2, (13)

X2
ε−−−→ X1, (14)

with reaction rate coefficients r for recruitment and ε for spontaneous switching.

The interaction graph has consequently a maximal node degree of two. Such a

small node degree barely justifies calling the modeled swarm “dense”, however,

this model should be seen as a representation of swarm systems implementing a

majority rule for any node degree bigger than one (k > 2). Systems with bigger

node degrees only differ quantitatively in their convergence speed [14].

Similarly to the second-order model, we apply the continuous limit approxima-

tion for determining the transition probabilities. The continuous limit approxima-

tion is particularly useful in this case as it allows us to ignore the order of agents

involved in the majority decision and to simplify our derivations (see Dyson et

al. [7]). The transition probabilities of the chemical reaction network (eqs. 11 to

14) are

T1 ≡ T
(
x1 +

1

N
, x2 −

1

N

∣∣∣∣x1, x2) = rx21x2 + εx2,

T2 ≡ T
(
x1 −

1

N
, x2 +

1

N

∣∣∣∣x1, x2) = rx1x
2
2 + εx1. (15)

Hence, the Markov chain probabilities for the third-order-interaction model for

r 6 1 and ε 6 1 are defined as

pi,i+1 = rx21x2 + εx2,

pi,i−1 = rx1x
2
2 + εx1,

pi,i = 1− (rx21x2 + εx2 + rx1x
2
2 + εx1). (16)
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4.3 The intermediate model for sparse swarms

Finally, we define an intermediate model to represent any combination of the

second-order-interaction model and the third-order-interaction model. The inter-

mediate model is formed by the recruitment reactions for node degree k = 1 and

k = 2, as well as by the reactions implementing spontaneous switching. Thus, it is

an appropriate model to address the variance of node degrees that causes varia-

tions in local swarm densities. The chemical reaction network of the intermediate

model is given by

X1 + X2
r1−−−→ 2 X1, (17)

X2 + X1
r1−−−→ 2 X2, (18)

2 X1 + X2
r2−−−→ 3 X1, (19)

X1 + 2 X2
r2−−−→ 3 X2, (20)

X1
ε−−−→ X2, (21)

X2
ε−−−→ X1, (22)

for reaction rate coefficient r1 for recruitment in groups of size two, reaction rate

coefficient r2 for recruitment in groups of size three, and reaction rate coefficient ε

for spontaneous switching.

From the chemical reactions (eq. 17 to 22) we can determine the transition

probabilities

T1 ≡ T
(
x1 +

1

N
, x2 −

1

N

∣∣∣∣x1, x2) = r2x
2
1x2 + r1x1x2 + εx2,

T2 ≡ T
(
x1 −

1

N
, x2 +

1

N

∣∣∣∣x1, x2) = r2x1x
2
2 + r1x1x2 + εx1, (23)

for r1, r2 6 1 and ε 6 1. This defines a Markov chain model that allows us to explore

a continuum of swarm densities by varying the ratio between rate coefficients r1

and r2. That is, we vary the probabilities of an agent to interact with either one or

two neighbors2. For example, if most agents have a node degree of k = 1 then the

probability P (X = 1) is the highest among the other probabilities (i.e., agents are

2 As defined in Section 3.2, sparse systems have a majority of nodes with degree two or less:
P (X = 0) + P (X = 1) + P (X = 2) > 0.5.
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meeting mostly in pairs). This leads to a reaction rate coefficient r1 that is higher

than both r2 and ε. Similarly, if the system is denser and mostly three agents

are meeting, then the reaction rate coefficient r2 is increased to be greater than

both r1 and ε. If we assume to have a constant ε, the relation between r1 and r2

allows us to define a system density measure over a continuous range

d = r2 − r1, (24)

that we will use later in Sec. 5.3.

Finally, we derive the transition probabilities of the Markov chain to explore

a continuum of swarm densities by varying the ratio of the rate coefficients r1

and r2:

pi,i+1 = r2x
2
1x2 + r1x1x2 + εx2,

pi,i−1 = r2x1x
2
2 + r1x1x2 + εx1,

pi,i = 1− (r2x
2
1x2 + r1x1x2 + εx2 + r2x1x

2
2 + r1x1x2 + εx1). (25)

5 Results

In the following, we give examples for the three models described in the previous

section. We describe conditions for noise-induced bistability in the second-order-

interaction model, we compute mean first passage times (MFPT), which can be

helpful to determine critical population sizes experimentally, and we investigate

the intermediate model in particular.

5.1 The second-order-interaction model for very sparse swarms

As done by Biancalani et al. [4], we define the system state as z = x1 − x2,

z ∈ [−1, 1]. This swarm system displays noise-induced bistability: “This type of

bistability cannot be understood from the fixed points of the corresponding deter-

ministic [differential] equations” [4] because the expected change of z is dz/dt =

−εz for the infinite limit N →∞. This defines a negative feedback process and has
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N=1/ ǫ N>1/ ǫ N<1/ ǫ

Fig. 3: the label of y-axis is corrected.
Second-order-interaction model: stationary distribution for different swarm sizes N
∈ [1, 50]. In the figure are shown: sub-critical (N < 1/ε, dashed lines), critical
(N = Nc = 1/ε, thick line), and super-critical sizes (N > 1/ε, continuous lines)
for ε = 1/10. Note the bimodal (U-shape, dashed lines) and unimodal (inverted
U-shape, continuous lines) distributions.

a stable fixed point at z∗ = 0 [4]. Depending on the rate coefficient ε, we define

a critical swarm size Nc = 1/ε [4], such that the system is bistable for N < Nc

(i.e., bimodal stationary distributions) and unistable for N > Nc (i.e., unimodal

stationary distributions). It is important to note that noise-induced bistable sys-

tems such as the systems modeled using the second-order-interaction model do

not scale well due to the existence of a critical swarm size.

We use standard numerical techniques to compute the stationary distribution s

of the Markov chain given by the transition probabilities in eq. 10. The resulting

distribution is shown in Fig. 3 for three parameter settings: N < 1/ε, N = Nc =

1/ε, and N > 1/ε. For N < 1/ε, the model converges to bimodal distributions and

models therefore an effective decision-making system (i.e., the system resides for

most of the time in the extreme states of z = −1 and z = 1). For N > 1/ε, the

model converges to unimodal distributions and thus models a system that fails to

make a collective decision (i.e., the system resides for the most time in “undecided”

states close to z = 0).
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Fig. 4: Second-order-interaction model (eqs. 5 to 8): the case of N > 1/ε. (a) A
trajectory of z = x1 − x2 sampled from the Markov chain. (b) The stationary
distribution of z compared to the average of 50 data samples (parameter setting:
ε = 1/10, r = 1, N = 100).

Next, we show a few trajectories of z that we directly sample from the Markov

chain model. We initialize the system to X = (X1, X2) = (N/2, N/2), which corre-

sponds to x = (0.5, 0.5) and z = 0. The rate coefficient r is set to r = 1.

We start with the super-critical situation of N > 1
ε (Nε > 1, 1

ε = Nc = 10).

Parameters are set to ε = 1
10 , r = 1, and N = 100. Fig. 4a shows a trajectory

of z sampled from the Markov chain, in which the system fluctuates around z = 0.

Fig. 4b shows the respective unistable stationary distribution obtained from the

Markov model (eq. 10). The stationary distribution is compared to data obtained

from 50 samples of the Markov chain.

To trigger a sub-critical situation of N < 1
ε (Nε < 1, 1

ε = Nc = 100) we set

ε = 1
100 , r = 1, and N = 50. Fig. 5a shows a trajectory of z sampled from the

Markov chain, in which the system stays close to either z = 1 or z = −1 for

most of the time and switches between them relatively frequently. Fig. 5b shows

the respective bistable stationary distribution of z. The stationary distribution is

compared to data obtained from 50 samples from the Markov chain.

An interesting feature of the stationary distribution is the expected time to

switch from one stable state to the other. This value is an indicator of how the

system approaches the exploitation vs exploration tradeoff. A short switching time

(i.e., high switching frequency) indicates a high degree of exploration and thus a

certain readiness for dynamic changes in the environment. A long switching time
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Fig. 5: Second-order-interaction model (eqs. 5 to 8): the case of N < 1/ε. (a) A
trajectory of z = x1 − x2 sampled from the Markov chain. (b) The stationary
distribution of z compared to the average of 50 data samples (parameter setting:
ε = 1/100, r = 1, N = 50).
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Fig. 6: Second-order-interaction model (eqs. 5 to 8): mean first passage times
(MFPT) from one stable state to the other. The figure shows the Markov model
(solid, dashed and dotted lines) compared to data from 100 samples of the Markov
chain (crosses) (parameter settings: ε ∈ { 1

20 ,
1
30 ,

1
50} and Nc = 1/ε).

(i.e., low switching frequency) indicates a high degree of exploitation. We are

interested in the MFPT between the two stable (boundary) states given by3

m0,N =
fN,N − f0,N

sN
, (26)

Where fi,j is the expected number of visits to state j starting from state i.

3 See Appendix B
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Fig. 7: Analysis of the mean first passage times (MFPT) for the second-order-
interaction model. Quantile-quantile plots of the data are obtained from simula-
tions for (a) ε = 1

20 , (b) ε = 1
30 , and (c) ε = 1

50 and compared to an exponential
distribution.

In Fig. 6 we show the MFPT computed according to eq. 26. We compare it to

data of 100 samples from the Markov chain for parameters ε ∈ { 1
20 ,

1
30 ,

1
50} and

N/Nc ∈ [0, 1.5]. The calculated value and the Markov chain simulation match, and

the MFPT grows exponentially with
N

Nc
. To verify exponential scaling, we used a

quantile-quantile (q-q) plot of the data obtained from the simulations against an

exponential distribution as shown in Fig. 7. The symbols in the q-q plot lay on a

straight line indicating a linear correlation between the data and the exponential

distribution. However, the values are off the main diagonal indicating a linear

deviation from the exponential distribution (slopes: 1.41 for ε = 1
20 , 1.26 for ε =

1
30 , and 1.25 for ε = 1

50 ). Additionally, for large MFPT, we can observe a more

systematic deviation from the straight line indicating that the distribution of our

data is skewed. We tested our data against an exponential distribution with a one-
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Fig. 8: Third-order-interaction model: stationary distribution for different swarm
sizes N . Note that for any setting we get a bimodal distribution.

sample Kolmogorov-Smirnov test. The null hypothesis that the sample is drawn

from an exponential distribution could not be rejected (p-values: 0.93 for ε = 1
20 ,

0.75 for ε = 1
30 , and 0.20 for ε = 1

50 ). Therefore, we conclude that the data are

approximately exponentially distributed. A long MFPT means that the system

switches infrequently between the stable states and has thus a limited adaptivity

to changes in the environment. From this discussion, we conclude that adaptivity

scales poorly with the number of agents.

5.2 The third-order-interaction model for dense swarms

For the third-order-interaction model there is no critical swarm size Nc. The for-

aging system is always bistable unless it is dominated by agent noise. Hence, it

shows a bimodal stationary distribution for a large enough swarm size N and is

scalable. We compute the stationary distribution s of the Markov chain given by

the transition probabilities in eq. 16. The resulting stationary distribution s is

shown in Fig. 8 for three parameter settings: N < 1/ε, N = 1/ε, and N > 1/ε. For

all tested settings we obtain bistable distributions with the only difference that,

for N > 1/ε, the stable states shift slightly away from the boundaries z = −1 and

z = 1 due to the effect of spontaneous switching.
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Fig. 9: Third-order-interaction model (eqs. 11 to 14). (a,b) Two trajectories of
z = x1 − x2 sampled from the Markov chain. (c) The stationary distribution of z
compared to the average of 50 data samples (parameter setting: ε = 1/10, r = 1,
N = 100).

We show in Figs. 9a and b a few trajectories of z sampled directly from the

Markov chain of the third-order-interaction model. The system stays either close

to z ≈ 0.79 or z ≈ −0.79 for most of the time. The system switches infrequently

between stables states because of its relatively big size. Fig. 9c shows the respective

stationary distribution obtained from the Markov model (eq. 16).

We test a lower noise-level for the third-order-interaction model by setting

ε = 1
100 . Figs. 10a and b show sample trajectories of z. The system stays close to

either z = 1 or z = −1 for most of the time and still switches infrequently between

the stable states because of its relatively big size. Fig. 10c shows the respective

stationary distribution of z.
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Fig. 10: Third-order-interaction model (eqs. 11 to 14). a) and b) Two trajectories
of z = x1−x2 sampled from the Markov chain. c) The stationary distribution of z
compared to the average of 50 data samples (parameter settings: ε = 1/100, r = 1,
N = 50).

In Fig. 11 we show the MFPT computed for the Markov chain according to

eq. 26 and we compare it to data from 100 samples from the Markov chain for

parameters ε ∈ {1/20, 1/30} and N ∈ {1, 2, . . . , 45}. Again, the MFPT increases

approximately exponentially with the swarm size and hence shows that adaptivity

scales badly. A quantitative comparison with Fig. 6 indicates that the second-

order-interaction model has an MFPT that is magnitudes smaller than that of

the third-order-interaction model (e.g., for N = 45, ε = 1
30 , magnitude of 104 for

the second-order-interaction model compared to 107 for the third-order-interaction

model).
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Fig. 11: Mean first passage times (MFPT) from one stable state to the other for
the third-order-interaction model (eqs. 11 to 14). (a) For the parameter settings:
ε = 1/20 and N ∈ {1, 2, . . . , 30}. (b) For the parameter settings ε = 1/30 and N ∈
{1, 2, . . . , 45}, Markov model (solid line) compared to 100 data samples (crosses).

5.3 The intermediate model for sparse swarms

We investigate the influence of varying densities using the intermediate model

defined in eqs. 17 to 22. We use this model for sparse swarms whose observed

node degrees are mostly k = 0, k = 1, and k = 2. Depending on the chances of

each node degree to appear, we configure the corresponding reaction rate coeffi-

cient. We model the different interaction probabilities in two ways. We can vary

simultaneously the value of both the recruitment rates r1, r2 and the spontaneous

switching rate ε. Alternatively, we can keep the value of ε constant and vary only

the values of r1 and r2. We distinguish between the three cases (i) when agents

tend to have no neighbors in range, spontaneous switching (eqs. 21 and 22) occurs

with the highest probability. Hence, this system is dominated by agent noise and

can be modeled by ε/r1 � 1 and ε/r2 � 1. A resulting stationary distribution is

shown in Fig. 12a, in which we can notice that the system is unistable due to the

high degree of agent noise; (ii) when the agents tend to have one or no neighbors,

we discriminate between noisy and non-noisy systems. In a noisy system, sponta-

neous switching (eqs. 21 and 22) as well as pairwise reactions (eqs. 17 and 18) are

frequent; whereas, in a non-noisy system only pairwise reactions (eqs. 17 and 18)

have a high reaction rate coefficient. This system can be noise-induced bistable de-
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pending on its size and on whether it is dominated by agent noise. The stationary

distribution of a unistable system is shown in Fig. 12b. The stationary distribu-

tion of a noise-induced bistable system is shown in Fig. 12c; (iii) when most of

the agents have at least two neighbors, we again distinguish between noisy and

non-noisy systems. In a noisy system, all reactions have about the same frequency.

In contrast, in a non-noisy system, the multi-fold (in our case third-order) reac-

tions (eqs. 19 and 20) have the highest reaction rate coefficient. This system can

be unistable or bistable depending on whether it is dominated by agent noise or

not. The stationary distribution of a unistable system is shown in Fig. 12d. The

stationary distribution of a bistable system is shown in Fig. 12e. We can represent

these three cases of the system by choosing appropriate values for the reaction

rate coefficients r1, r2, and ε in the intermediate model.

6 Density independent of noise

Finally, we consider a model with constant, density-independent agent noise; This

could be observed in collective decision-making systems in which the decision of

an agent to switch opinion spontaneously is taken individually and independently.

Using such a model allows us to focus on studying the dynamics of the swarm for

varying density as defined in eq. 24. Hence, we set the reaction rate coefficient ε =

0.1 for spontaneous switching and the reaction rate coefficients r1 and r2 are varied

but restricted to r1, r2 ∈ [0, 1] and r1 + r2 = 1. We use the density parameter

d = r2−r1 as defined in eq. 24 that allows us to emulate different swarm densities.

For d = −1 we get a second-order-interaction model, for d = 1 we get a third-

order-interaction model, and for increasing density d from d = −1 to d = 1 we can

investigate the transition from one model to the other. We rewrite the transition

probabilities from eq. 25 by substituting d for r1 and r2:

pi,i+1 =
d− 1

2
x21x2 +

1 + d

2
x1x2 + εx2,

pi,i−1 =
d− 1

2
x1x

2
2 +

1 + d

2
x1x2 + εx1,

pi,i = 1−
(
d− 1

2
x21x2 +

1 + d

2
x1x2 + εx2 +

d− 1

2
x1x

2
2 +

1 + d

2
x1x2 + εx1

)
. (27)
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Fig. 12: Stationary distributions for different densities (very sparse, sparse, dense)
in the intermediate model. Parameter settings: N = 100, (a) ε ∈ [0.005, 0.05],
r1 = 10−5, r2 = 10−5. (b) ε = 0.05, r1 ∈ [0.005, 0.05], r2 = 10−5. (c) ε = 10−5,
r1 ∈ [0.005, 0.05], r2 = 10−5. (d) ε = 0.05, r1 = 0.05, r2 ∈ [0.005, 0.05]. (e) ε = 10−5,
r1 = 0.05, r2 ∈ [0.005, 0.05]

In Fig. 13 we show the stationary distributions of the model computed for a

varying swarm density d over the full range [−1, 1] (in steps of 0.001). Both the
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Fig. 13: Intermediate model: stationary distributions for varied swarm density d ∈
[−1, 1]. The bifurcation point is d∗ ≈ −0.232, d = r2 − r1, r1 + r2 = 1, ε =
0.1, N = 100, warm colors represent high probabilities, cold colors represent low
probabilities.

agent noise level (ε = 0.1) and the swarm size N = 100 are chosen such that

the intermediate model does not show noise-induced bistability. Consequently,

Fig. 13 shows a unistable distribution for −1 6 d < −0.232. By increasing the

density from d = −1 to d ≈ −0.232, the state of the swarm has an unistable

distribution which covers a wider range of z-values centered around z = 0; starting

from d∗ ≈ −0.232 the swarm makes a transition to a bistable distribution due to

the influence of the majority rule reactions outplaying spontaneous switching.

Thus, the approximate bifurcation point is d∗ ≈ −0.232. This situation can be

interpreted as a stochastic variant of a super-critical pitchfork bifurcation, that

is, a random dynamical attractor [2] emerges as a consequence of the positive

feedback generated by the application of the majority rule. This can be explained

by the following consideration. The effect of the majority rule is modeled by the

term rz(1−z2)/2 [14] and the normal form of a super-critical pitchfork bifurcation

is a similar polynomial that differs only in its constants: dz/dt = cz − z3.

In summary, we notice a strong dependency of the collective decision-making

system on the swarm density. Such a dependency has a qualitative impact and

can turn a fully effective system (i.e., a bistable system that resides most of the
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time close to one of the two consensus decisions) into an ineffective system (i.e., a

unistable system that is most of the time far from a consensus decision).

7 Agent-based simulations

To validate the theoretical results discussed so far and reveal the effect that space

aspects have on the dynamics of the decision-making process, we performed a

further set of experiments with an agent-based model of our system4.

The two salient features of the mathematical model are (i) that the system is as-

sumed well-mixed, and (ii) the agents make decisions depending on the number of

neighbors they encounter. To account for (i), we considered agents as point-masses

characterized by position and velocity, and we let the agents move randomly in the

environment. We identified two ways to allow the system to mix well: setting the

maximum speed of the agents and tuning the frequency of the decisions. Regarding

(ii), since the agents are moving, fixing a specific node-degree-based density is not

possible, and the system will have a mix of second- and third-order interactions.

However, it is possible to favor either type of interaction by considering the spatial

density of the agents, defined as the ratio between the total area occupied by the

agents’ communication range and the total area of the environment. Intuitively,

low-density simulations (in the spatial sense) correspond to cases in which the

dynamics is dominated by agents having zero or one neighbor at most; differently,

with high spatial density the dynamics is dominated by agents with two or more

neighbors.

The behavior of each agent is formalized in Alg. 1. Every agent is characterized

by its position p, its velocity v, and its current decision d. The simulation proceeds

in a step-wise fashion, and t indicates the current step. The agent updates its

position at every step, and makes a decision every T steps (in a synchronous

fashion). When making a decision, the agent considers the number of its neighbors:

if no neighbor is around, the agent switches with probability ε; with exactly one

neighbor, it switches with probability r1 if the neighbor disagrees with the agent;

with two or more neighbors, the agent switches with probability r2 if it is in

4 The source code of the agent-based simulator can be downloaded at: https://github.com/
NESTLab/DMSim

https://github.com/NESTLab/DMSim
https://github.com/NESTLab/DMSim
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Algorithm 1 The decision-making algorithm followed in our agent-based simu-
lations discussed in Sec. 7. The agent is characterized by position p, velocity v,
and current decision d. The maximum speed is calculated as a fraction M of the
environment side length L.

if t mod T = 0 then . This is a decision step
v←ML[U(−1, 1),U(−1, 1)] . Random speed
n← number of neighbors
if n = 0 then . No neighbors

d← switch(d, ε) . Switch decision with prob ε

else if n = 1 then . Exactly one neighbor
if neighbor has different choice then

d← switch(d, r1) . Switch decision with prob r1

else if n = 2 then . Exactly two neighbors
if both neighbors have different choice from this agent then

d← switch(d, r2) . Switch decision with prob r2

else . More than two neighbors
Pick two neighbors at random
if both neighbors have different choice from this agent then

d← switch(d, r2) . Switch decision with prob r2

p← update(p,v) . Update agent pose and solve collisions

a minority decision with respect to the other two neighbors, see eq. (11) and

eq. (12). Every decision step, the agent also picks a new random velocity vector.

Rather than fixing the speed throughout the entire run, this choice simulates better

the possible behavior of the agents in a real setting, and prevents the creation of

recurring motion patterns that could skew the results.

At the beginning of each experimental run, N = 100 agents are uniformly dis-

tributed in the environment. The environment is a square with side length L, a

screenshot of our agent-based simulator is shown in Fig. 14. Whenever an agent

is about to move past the environment boundaries, its velocity is fixed to make

it “bounce” against the wall, preventing it from leaving the arena. By control-

ling the size of the arena, we can control the spatial density of the robots. More

specifically, given a certain spatial density δ that we aim to impose, the side of the

square environment is calculated as L =
√
Nπ/δ. To account for mixing, in our

experiments we set the maximum speed a robot can travel as a fraction M of the

environment side length (i.e., maximum speed is ML). This choice allows us to

compare experimental setups with different spatial densities, and assess the effect

of the agent speed on the decision-making process. Finally, we set the decision
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frequency 1/T = 0.1, that is, the robots make a decision every 10 time steps. To

collect meaningful statistics, each setup 〈ε, r1, r2, δ,M〉 was run 100 times.

Fig. 14: A screenshot of the agent-based simulator at simulation step 741.

(a) (b)

Fig. 15: Second-order model (very sparse system) with N = 100 and δ = 0.1.
(a) 1/ε = 10 ( N > 1/ε), maximum speed is 0.01 left and 0.1 right. (b) 1/ε =
1000 (N < 1/ε), maximum speed is 0.01 left and 0.1 right.

The results of our experiments are reported in Figs. 15–17. Fig. 15 shows how

the second-order model, which corresponds to a very sparse agent distribution,

agrees with the mathematical model dynamics shown in Figs. 4 and 5. This holds

both for the case N > 1/ε and N < 1/ε, regardless of the value of the maximum

speed ML, M ∈ {0.01, 0.1}. Fig. 16 shows the behavior of the third-order model,
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(a) (b)

Fig. 16: Third-order model (dense system) with N = 100 and δ = 10. (a) 1/ε = 10 (
N > 1/ε), maximum speed is 0.01 left and 0.1 right. (b) 1/ε = 1000 (N < 1/ε),
maximum speed is 0.01 left and 0.1 right.

Fig. 17: The agent density independent of noise. Density here is defined as r2 − r1
(see Sec. 6). It is independent of the agent noise ε. We set N = 100, 1/ε = 10,
maximum speed = 0.001, and r1 − r2 = [−1, 0.5, 0, 0.5, 1] from left to right.

which corresponds to a dense swarm. Also in this case the results match the

mathematical model regardless of the maximum speed—the system stays decided,

see Fig. 9 and 10. Finally, the graphs in Fig. 17 show that the bifurcation predicted

by our mathematical model (see Fig. 13) are confirmed also with agent-based

simulations. We have selected a low value for the maximum speed (i.e., M = 0.001),

so that the switch of the system from being undecided to being decided can be

observed smoothly (other values of maximum speed show qualitatively the same

behavior but it is not so easily observed).

8 Discussion and conclusion

We have presented two mathematical models, the second-order-interaction model

and the third-order-interaction model, to describe the dynamics of very sparse

swarms and dense swarms, respectively. Based on these models, we have defined
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a third mathematical model that allows us to investigate a continuous transition

between the node-degree-based density of the second-order-interaction model and

that of the third-order-interaction model. The third, intermediate model is ob-

tained as a linear combination of the two models through the node-degree-based

density parameter d, and is used to describe sparse swarms.

In the second-order-interaction model, negative feedback dominates the dy-

namics of the decision-making process, and noise-induced bistability can emerge

only if the swarm is small; therefore, the system is not scalable. Systems that are

modeled using the third-order-interaction model are bistable whenever the posi-

tive feedback generated by the majority rule dominates over the agent noise (i.e.,

noise introduced by spontaneous switching). These systems scale with swarm size

and converge to a collective decision. However, the MFPT between the two stable

states increases exponentially with the swarm size in these systems, which shows

therefore a limited adaptivity to a dynamic environment (i.e., the system has dif-

ficulties in overturning a decision). By means of the intermediate model, we have

investigated the transition from second-order interactions to third-order interac-

tions with constant density-independent agent noise implemented by spontaneous

switching. The change in swarm node-degree-based density results in a qualita-

tive change of the decision dynamics from dominant negative feedback (unistable

stationary distribution) to dominant positive feedback (bistable stationary dis-

tribution, cf. [43]). We validated our mathematical approach through extensive

agent-based simulations, in which we considered aspects of the system such as

spatial density and motion. The results show that the agent-based simulations

match the predictions of the mathematical model.

Our starting point was the model of Biancalani et al. [4]. However, it is ques-

tionable whether Biancalani et al. [4] made a good choice in picking the Ohkubo

system to model recruitment in ant foraging. Any noise-induced bistable system

does not scale by definition because a critical swarm size exists. Such a foraging

system would therefore not comply with the definition of swarm intelligence that

requires scalability [5]. Any swarm system that relies on noise-induced bistabil-

ity would hence be required to have a second mode of operation that governs

super-critical swarm sizes. An example of how natural systems deal with chal-

lenges imposed by small swarm sizes is task switching during nest construction in
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wasps [21, 13]. Small swarms have more frequently switching generalists to pre-

vent slow-downs or deadlocks due to finite size effects (e.g., long waiting times for

material transfers).

In this paper, we have focused on collective decision-making and in particular

on the majority rule. We argue that the majority rule, with its minimal group size

of three (node degree of two), is a prototypical example of which behavioral fea-

tures influence the scalability of collective systems. Other examples of behavioral

features that influence the system’s scalability and that crucially depend on the

swarm density are waiting times in object manipulation [20] or aggregation [35],

as well as scaling of gradient values for localization in self-assembly [33]. Hence,

we anticipate that our findings might generalize well.

We have explained the relevance of our findings to swarm intelligence in two

exemplary interpretations. First, there can be a minimal critical swarm density

in systems with swarm intelligence. For densities below that critical density the

system fails (e.g., we would get an unistable stationary distribution in a collective

decision-making system), although agents still approach each other and interact

for very small densities d � 0. However, the modeled system is either too big

or is characterized by a reaction rate coefficient r1 that is too high to achieve

noise-induced bistability. Second, any real collective system has a nonuniform dis-

tribution of agents in space. While it might be tempting to assume a uniform

distribution when a particular average swarm density is given, the actual swarm

distribution will be nonuniform. Consequently, the variance in the swarm density

becomes relevant. If the swarm density variance is high, which is often the case

in swarm systems (e.g., see [35, 15]), then there are areas of both high and low

density. The fraction of the swarm Nh/N operating in an area of high density dh is

probably effective, but the fraction of the swarm Nl/N operating in an area of low

density dl is probably ineffective or even obstructive with respect to the swarm

capacity of making a collective decision. Hence, whether a collective system is ef-

fective for a given swarm density and whether it scales to lower and higher densities

depends on the nonuniform agent distribution. Similarly, the spatial distribution

of agents determines which part of Fig. 13 represents the swarm performance (ei-

ther the high density part d ≈ dh or the low density part d ≈ dl). In addition,

modeling techniques that represent only mean values for the limit N →∞ neglect
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the variance and are consequently incapable of modeling these crucial finite-size

effects. Furthermore, many collective systems are effective exactly because they

succeed in generating the required network dynamics that creates desired node

degree distributions (i.e., desired swarm densities) in a self-organizing process.

As a consequence, we argue that node degree distributions in collective systems

are crucial for scalability investigations. Usually, collective systems need to be

interpreted as dynamic networks, which are challenging to model [30, 17, 43].

Graphs generated by PPP have Poisson-distributed node degrees as discussed

in Sec. 3.2. The Poisson distribution with the parameter λ has both mean and

variance equal to λ. This could indicate a challenge for a dense system such as

a swarm under the assumption that PPP represents a reasonable network model.

For example, in a swarm where an average node degree of λ = 11 can be observed,

the variance will also be λ = 11. Hence, there is a swarm fraction that should not

be overlooked with node degrees down to even two and three. If those parts of the

swarm that operate in low density areas are ineffective or even obstructive, then

one might overestimate the scalability of the swarm.

The efficiency of a collective system has to be guaranteed for a minimal swarm

density and for a minimal swarm size based on an assumed homogeneous distribu-

tion of agents. However, it is necessary to go beyond these requirements and effi-

ciency also needs to be guaranteed when there is variance in the swarm density—a

common feature of collective systems due to nonuniform agent distributions. These

nonuniform distributions increase the importance of analyzing finite size effects

that influence the system negatively. For example, in a collective decision-making

system, agents from a very sparse region might permanently prevent convergence

by getting in contact with a denser region often enough to disturb the system

but also too infrequently to be recruited at large extent. The required analysis

of finite size effects may be complex as also indicated by the situation shown in

the bifurcation diagram in Fig. 13: a swarm effect that can be interpreted as a

discrete jump from an ineffective state (unistable) for d∗ < −0.232 to an effec-

tive state (bistable) for d∗ > −0.232. Such a qualitative change in the behavior

probably depends more on the swarm density than on the swarm size except for

rather specific situations such as a required number of agents to build a bridge or
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to push an object. Consequently, a more reasonable definition of scalability may

be scalability over node-degree-based density.
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Appendix A: Agent density in terms of area

For a given swarm size N and a given area A the swarm density is given by ρ = N/A.

For simplicity we set the area to A = 1 [space unit]. We also require the concept of

a critical swarm size Nc that corresponds to a critical swarm density ρc = Nc/A =

Nc.

The node degree λ, as mentioned above, defines the group size λ + 1 of an

agent. We compute the area As covered by an agent’s sensor as As = πu2 (for

sensor range u), and we assume As � A. We get the expected node degree

λ = ρAs = NAs. (28)

Hence, the swarm density is defined in terms of swarm size N and node degree λ

or group size λ+ 1 for fixed sensor range u, where N or ρ can be varied. Note that

the uniform distribution used for the agents approaches the imposed density ρ

averaged over big areas but may vary considerably within small areas because

the agents are not distributed with equidistant positions. Hence, the local node

degrees vary as well.

Appendix B: Computation of MFPT of a Markov chain model

For a Markov chain model we can compute the MFPT from state i to state j

[19, 18] as

mi,j = pi,j +
∑
k 6=j

pi,k(mk,j + 1), (29)
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for the transition probability matrix P of the Markov chain with entries pi,j . Our

Markov chain is ergodic, thus the mean first passage time can be computed using

the fundamental matrix F of the Markov chain which is defined as

F = (I − P + S)−1, (30)

where I is the identity matrix and S = limt→∞ P t is a matrix whose rows are

equal to each other and given by the stationary distribution s. An entry fi,j of F

gives the expected number of visits to transient state sj if the system is started

in transient state si. Here we can compute M with entries mi,j giving the MFPT

from state i to state j using the fundamental matrix of the ergodic chain by

mi,j =
fj,j − fi,j

sj
. (31)
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