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ABSTRACT

Group interactions are widely observed in nature to optimize a set of critical collective behaviors,
most notably sensing and decision making in uncertain environments. Nevertheless, these
interactions are commonly modeled using local (proximity) networks, in which individuals interact
within a certain spatial range. Recently, other interaction topologies have been revealed to
support the emergence of higher levels of scalability and rapid information exchange. One
prominent example is scale-free networks. In this study, we aim to examine the impact of scale-
free communication when implemented for a swarm foraging task in dynamic environments. We
model dynamic (uncertain) environments in terms of changes in food density and analyze the
collective response of a simulated swarm with communication topology given by either proximity
or scale-free networks. Our results suggest that scale-free networks accelerate the process of
building up a rapid collective response to cope with the environment changes. However, this
comes at the cost of lower coherence of the collective decision. Moreover, our findings suggest
that the use of scale-free networks can improve swarm performance due to two side-effects
introduced by using long-range interactions and frequent network regeneration. The former
is a topological consequence, while the latter is a necessity due to robot motion. These two
effects lead to reduced spatial correlations of a robot’s behavior with its neighborhood and to
an enhanced opinion mixing, i.e. more diversified information sampling. These insights were
obtained by comparing the swarm performance in presence of scale-free networks to scenarios
with alternative network topologies, and proximity networks with and without packet loss.
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1 INTRODUCTION

The efficiency of the information sharing mechanisms used by individuals during group decision processes
determines to a large extent the fitness of the group decision. In nature, collective systems consist of a high
number of individuals living in large and unknown environments, and needing to perform complex tasks to
survive. Among the many examples of collective decision-making is choosing a new site to build their home
[1], or deciding among a number of foraging patches [2]. Despite the high diversity of tasks, uncertainty
and complexity are common features. Hence, individuals apply information pooling to mitigate uncertainty
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and increase decision accuracy [3]. Achieving efficient opinion sampling depends to a large extent on the
network topology that defines the interaction structure and opinion sharing of these individuals [4, 5]. The
use of such network is fundamental for collective decision-making. It is generally exploited at two stages
of the process (i) when spreading information on one or multiple stimuli that are initially perceived by
a limited number of individuals that are able to trigger the collective decision process—e.g. a predator
attack—; and (i1) when spreading the individuals’ opinions or choices to achieve consensus [6].

In artificial systems such as swarm robotics, collective decision-making is mostly designed in static
environments [/l], where options and their qualities are defined at the beginning and do not change over time.
In these studies the focus is mainly on the design of efficient voting mechanisms that enable a high level
of decision coherence within the shortest time possible [4]. Alternatively, other studies were addressing
the design of decision strategies that tackle the accuracy vs. speed trade-off [8]—i.e. taking longer time to
gather enough information and making more accurate decisions vs. exploiting the available information
and taking the decision as soon as possible. In both cases, the speed of converging on a decision is a
fundamental goal in the design of decision-making. The decision speed strongly depends on the interaction
topology the individuals are part of, to spread stimuli or opinions during the decision-making process.
Interactions in collective systems are frequently modeled using local (i.e. proximity) communication, where
the neighborhood of an individual is defined spatially based on their interaction range, i.e. interacting
with all peers within the individual’s communication radius. Nevertheless, other interaction models such
as scale-free networks were revealed in several real-world examples [9, [10]. A comprehensive review
on scale-free phenomena in a more general context can be found in [11]. In various works, scale-free
networks enable scalable, fast and efficient information transfer. For example, in [12], authors showed how
the betweenness centrality scales with the scale-free exponent. Other works showed how the ultrasmall
diameter of the scale-free networks contributes to their efficiency in information transmission [[13} [14].
Finally, scale-free topologies were studied in natural collective systems such as in [15]. In this work, the
authors studied starlings flocks and suggest that collective response to predator’s attacks may be achieved
through scale-free behavioral correlations. Based on these studies, we extend the application of scale-free
networks to artificial swarms in order to investigate the role these networks can play in improving a swarm’s
collective decision-making process.

A key aspect of scale-free networks is the presence of hubs—i.e. nodes with a comparably high
connectivity degree—[ 16, [17]]. Hubs represent a small percentage of the network nodes, however, their high
connectivity leads to a small network diameter. This facilitates efficient communication by enabling any
two random nodes to share information over only few hops, resulting in fast information transfer [13]]. In
this paper, we exploit this critical feature of scale-free networks to help collective systems to faster respond
to changes in dynamic environments. In dynamic environments, conditions change over time and hence,
the collective system needs to adapt its behavior within a short period of time in order to survive. We refer
to this as the collective response time. In our study, this is the time required for the group to collectively
change the intensity of its foraging activities as a response to a change in the availability of the food items.

Among many examples of collective tasks in natural systems, we select foraging 18] and perform our
study using a simulated population of swarming robots. Foraging is a complex task used by many species
to retrieve food to their homes, but beyond that it is a metaphor for many real-world robotics tasks such
as search and rescue, retrieve materials for collective construction and others. In foraging, individuals
(robots) need to continuously make a decision between staying at their base or leaving to forage for food
items. A large body of literature has been dedicated to investigate foraging in artificial systems such as
swarm robotics. These studies have addressed various research questions such as the foraging performance

This is a provisional file, not the final typeset article 2



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112
113

Rausch et al. Running Title

under the influence of physical robot interference [19, 20], the multi-foraging task [21]—i.e. the foraging
for different types of items—or consensus achievement [22} 23]]. Additionally, some studies have focused
on how to optimize the task allocation in foraging using cost functions [24, 25]. Also how to investigate
simple probabilistic models that rely on the foraging success probability in achieving an efficient foraging
behavior [26]]. Other studies have gone further to investigate whether the performance of swarms in the
foraging tasks bears a particular characteristic distribution (e.g. a power law) for any of its time or space
features [27, 28]]. Despite this intensive research effort, foraging of robot swarms in dynamic environments
and the influence of different interaction models are still not well understood. However, these questions are
paramount, given the prevalence of scale-free phenomena in real-world systems and admitting that most
real environments are dynamic. Therefore, in this paper, we focus on the fundamental question of how the
integration of a scale-free interaction structure may influence the collective response of simulated swarms
to changes in food density within the foraging environment. We approach this question by analyzing
the speed and coherence of the collective response to those changes. We begin with defining the robot
(microscopic) and the swarm (macroscopic) behaviors in Sec. and Sec. respectively. The details on
generating scale-free networks from local neighborhoods are given in Sec.[2.2] In Sec. [2.4] we describe the
experimental setup. Thereafter, in Sec. [3] we compare the collective response of the swarm in presence and
absence of scale-free interactions. We discuss our findings that suggest that the use of scale-free interactions
can be advantageous due to (i) reduced correlations between a robot’s decisions and those of its spatial
neighbors and (ii) enhanced information spread through long-range interactions and frequent rewiring of
communication links. These insights are obtained by comparing the influence of scale-free networks to
scenarios with alternative random networks as well as scenarios that include packet loss. Conclusions are
drawn in Sec. 4l

2 METHODS
2.1 Robot behavior

Robots are placed in an arena that is divided into two areas: the nest and the foraging environment.
Inspired by the behavior observed in harvester ants Pogonomyrmex barbatus [29, 30], each robot can switch
between two essential states: resting and foraging. In the foraging state, the robot attempts to find a food
item inside the foraging environment by performing a pseudo-random walk. In particular, the robot moves
on a straight line until it encounters another robot or an obstacle (e.g. a wall), in which case a collision
avoidance maneuver is initiated. By executing this maneuver, the robot attempts to move in the direction
of least physical interference, as sensed by its proximity sensors. After executing the collision avoidance
maneuver, the robot goes back to its standard motion following a straight line. When the robot encounters a
food item, it collects this item and retrieves it back to the nest where the robot rests for a given period of
time 6,.

In the resting state, the robot remains inside the nest, which is the only area where communication with
other robots can take place. This is inspired by several natural systems, in which the communication occurs
mainly inside the nest or the hive [[18} 31,32, 33]]. This approach accommodates two relevant properties of
foraging systems: (i) it is common that the foraging environment is significantly larger than the nest area,
and hence, individual encountering rates outside the nest are negligibly low. (ii) Due to the high density of
individuals inside the nest there is a high likelihood of interaction between individuals that have explored
different parts of the foraging environment, and hence a more diversified sample of information about the
environment can be collected.

Frontiers 3



114
115
116
117
118

119
120
121
122
123
124

125
126
127
128
129
130

Rausch et al. Running Title

Robots can communicate only with neighbors that are within a direct line of sight, sharing their individual
experiences. This is a continuous process—i.e. each robot broadcasts at every time step its previous
experience (success or failure in finding a food item) until it switches again to the foraging state. Continuous
communication activity is a required choice of the experiment design to research the role of network
topology in the emergent behavior [28]].

All robots, in our study, are identical and each robot is a probabilistic finite state machine. In particular,
a robot’s behavior is shaped by two switching probabilities that describe at every time step the robot’s
likelihood to switch from foraging to resting (Fy_,;.) or the opposite (P, ). These probabilities are updated
differently at the robot’s resting and foraging states. At the foraging state, the switching probabilities are
updated using the robot’s foraging experience. The impact of this experience on the robot’s decision-making
is given by the set of two individual cues {z I z'r} e R; x RJ. More specifically, the cue i s defines a
numerical value by which the probability to switch from resting to foraging (P, 7) is increased when the
robot has experienced foraging success—i.e. a discovered food item during the latest foraging attempt. The
same value is used to decrease this switching probability in case of a failed foraging attempt, i.e. when the
robot has spent a specific time (f) foraging without finding a food item. The cue i, updates the robot’s
switching probability from foraging to resting (Pr_,,) in a manner that is inverse to i ;. Besides updating the
switching probabilities at the foraging state, the robot updates those while resting. This update is performed
using the experience received from the robot’s neighbors and is numerically given by two social cues
{s I sr} € Rar X Rg . The social cue s is used to update the switching probability from resting to foraging
(i.e. P._ r) by increasing (decreasing) P,._, ; when the robot’s neighbors report primarily on successful
(failed) foraging attempts. Whereas, s, is used to update the switching probability from foraging to resting
(i.e. Py_,), inversely to sy. In the following we define how the switching probabilities are updated at every
simulation step (as described in [28]]; to prevent divergence, both probabilities were truncated between zero
and one):

P p(t+1) = Pf(t) +
Pfﬂr(t + 1) = PfHT(t) —

(t)Sf +5¢(t)if (D)

O
Op(t)sr — 64 (t)ir, 2)
where 0,)(t) is the difference between the successful and the failed foraging attempts communicated to the
robot by its neighbors. Hence, it has a positive sign when there are more successful attempts than failed
ones and a negative sign otherwise. Consequently, the former increases the switching probability from
resting to foraging and the latter increases the switching probability from foraging to resting. d,(t) = 0 if
the robot is not resting. Additionally, the robot’s individual experience during a foraging attempt that starts
at t s is defined as follows:

+ 1, at t; f
0p(t) =10, ifty <t <ts+0; &noitem is found 3)
—1, ift >ty + 0y & the robot is still foraging
where ;¢ 1s the (unique) time step at which the robot finds an item while in foraging state. While in the
foraging state, the robot may find an item at any time ¢y < ¢;¢ (i.e. it could also happen that ¢y + 0 < t;5).
After finding an item, i.e. subsequently to ¢;, the robot leaves the foraging state. If no item is found and
the foraging time crosses the threshold 6, then d4(t) = —1. This increases Ps_,,(¢) at every time step
t > ty + 0y, guaranteeing that the robot will probabilistically leave the foraging state at some ¢, even
without finding an item. 64(¢) = 0 outside of the foraging state.
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The robot behavior is illustrated in Fig. [I] using a state diagram. It includes the following states:
(i) foraging: after having spent at least ;- time steps resting, the robot switches with probability P,._, ¢
from resting to foraging. It attempts to search the foraging area for a food item to retrieve to the nest.
If the robot fails to find a food item within a predefined time 6, it switches with probability P_,, to
homing; (ii) homing: in this transitional state the robot returns to the nest, with d,(t) = 0 and d4(¢) = 0; as
soon as the robot reaches nest, it switches to distancing; (iii) distancing: having returned to the nest, the
robot searches for an empty spot in the nest where it can rest; similar to the homing state, distancing is
a transitional state with 6,(¢t) = 0 and 64(¢) = 0; distancing terminates after 6, time steps and the robot
switches to resting; (iv) resting: subsequent to distancing the robot rests for at least 6, time steps after
which it switches with probability P,._, ; to foraging. A resting robot broadcasts ‘success’ (or ‘failure’) to
its neighbors if the latest foraging attempt was successful (or not), respectively. If the robot failed to leave
the nest in state (i), it has no information about the foraging environment and, thus, does not broadcast any
message. Throughout the entire experiment, the robot performs collision avoidance maneuvers if other
robots or walls enter its proximity sensors’ range (not shown in Fig. [I| for better readability).

Food found

efl P for

No food

>

Foraging

Resting

Distancing

Figure 1. The state transition diagram of a robot performing the foraging task.

2.2 Robot scale-free communication network

In this section, we describe the design and implementation of the algorithm that leads to a scale-free
robot communication network. An implementation of this algorithm in C++ is publicly available onlineﬂ
[34]]. The generation of a scale-free network from local neighborhoods is an iterative process, where at
each time step ¢ the robot communication is updated according to the following procedure:

1. Identify all connected components (C'C's) in the resting swarm using depth-first-search. A C'C'is the
maximal set of nodes (robots), where each two nodes are connected through a finite path. The C'C’s are
initially derived from the spatial networks in which the robots are neighbors if they are within each
other’s communication radius.

2. Generate the scale-free network topology within a C'C' using preferential attachment [16] as
summarized in Alg. [} This algorithm is largely inspired by previously proposed approaches [35], 36].

' https://osf.i0/48b9%h/
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We begin by selecting a sink node v, o which is the node with the highest number of neighbors within
its spatial proximity—i.e. within the initial radius of ¢ = 1.25 m. Within this 7, each spatial neighbor
Vs i is linked to v (, creating an initial sink network G . Next, we increase s by 0.2 m. Due to this
increase, new nodes vy, enter rs. Each v),¢,, is connected to any v following preferential attachment.
In a preferential attachment process, the higher the degree of node vy compared to the sum of all node
degrees within G5, the more likely iS v,¢, to connect to v. After all vy, were added to G, 75 is
increased again by 0.2 m. This process continues until G is of the same size as C'C'.

3. Repeat 2. for every C'C' in the swarm.

In Alg. |1} Ng;,x is the size of the sink network G, in terms of the number of nodes. Similarly, No¢o
is the size of the selected connected component; d, is the degree of node v, and . d; is the sum over
all degrees in the sink-network. Note that the robot communication approaches the scale-free network
topology only for large enough C'C. However, due to the relatively small area of the nest the robots had a
high tendency to self-aggregate into a giant connected component.

To test how successful Alg.[T|was in generating a scale-free topology, we recorded the degree distributions
at ¢ = 10 of 1000 simulation runs. At ¢ = 10 the large majority of robots was still resting inside the
nest, providing us with at least one large C'C. Scale-free networks are characterized by the power law
degree distribution. Thus, we tested whether our recorded degree distributions follow the power law using
previously established statistical methods [37, 28, 38]]. Essentially, this statistical analysis is a highly
rigorous power law fitting procedure that consists of three critical steps: (i) testing whether the shape of the
distribution is due to random fluctuations, i.e. testing the goodness-of-fit given by a p-value. We proceed to
the next step only if p < 0.1, otherwise the power law fit is considered unreliable. (ii) As the power law
behavior is commonly found at the tail of the distribution, we proceed to the third step only if the data
that is fit the power law behavior represents at least 10% of all data points. (iii) Finally, we compare the
power law fit to other common distributions (such as the exponential or the log-normal) that may also tend
to resemble a linear shape on a log-log scale (which is characteristic for the power law) [37,139]]. This is
done by considering the log-likelihood ratio of each pair of distributions, which has a negative value if
the distribution we compare the power law to is a significantly better fit. Consequently, the hypothesis
that the data is power law distributed is not rejected only if this log-likelihood ratio is positive and only if
we did not reject it at steps (i) and (ii). The result of the testing procedure can be captured by a numeric
value to categorize whether the support for the hypothesis is not present, weak, moderate or strong (for
more details see [28]]). The test results for Alg.|lI|have shown a statistically sound support for the power
law distribution in 76% of tests (we ran 1000 tests), suggesting that Alg.[l|was considerably successful in
creating scale-free networks.

Alternatively, one can use Alg.[I|to construct networks with a degree distribution that is less skewed
than power law and more symmetric around the mean degree, i.e. networks that resemble more closely
the well-known small-world networks. To this end, one can simply replace the preferential attachment
component dg/ Y d; by a real number.

2.3 Swarm behavior

At the swarm level, the foraging behavior emerges as a result of complex interactions between the robots
as well as between robots and their environment. As mentioned above, we evaluate this performance in
dynamic environments, in which the food density is subject to single and periodic changes. The quality of
the emergent performance is evaluated with respect to the swarm response (adaptivity) to the changing
number of items in the foraging environment. In particular, we define the swarm performance with respect
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Algorithm 1: Pseudo-code for the implementation of the preferential attachment, executed at each time
step.

initialize a sink network G, < CC"
Choose a node v € C'C' with the highest degree and connect it to its spatial neighbors
within the radius r¢ around v.
while Ng;,.. < N¢. do
increase 7
for each vy, € CC do
for each vy € G5 do
create a bi-directional link between 1,¢,, and v, with probability Pps = ds/ Y, d;
if no link created then
| Ppa<— Ppa+ds/>,;d;
end
end
end
end

to (i) the speed of the swarm’s collective response, and (ii) the number of retrieved items. The collective
response is quantified using the number of resting robots at any time step. For instance, in case of a sudden
high availability of food items an ideal swarm’s response would be to allocate more robots to the foraging
state shortly after the increase in the number of food items is detected.

We borrow the term of settling time from control theory to measure the time of the swarm’s collective
response, referred to as the convergence time—i.e. the time the swarm needs to adapt the number of
resting/foraging robots to any change in the items density. The settling time is defined as the time elapsed
from the moment of applying a particular stimulus (i.e. changing the items’ density) to the time the system
output (i.e. number of robots N, that are in the resting state) reaches and remains within a specified
margin of error. Hence, the time to convergence is computed as in the following:

teonv = an{S}, where S = ‘{t : ‘Fn(Nrest(t)) - Fn(Nrest(tsteady))‘ < C}a (4)

where inf{S} is the greatest lower bound of the set .S, and the set .S includes all time steps ¢ at which
the difference between the transformed number of resting robots at a specific time step N,¢s(t) and the
transformed number of resting robots at the steady state Ny.cg¢(£stcqaay) is smaller than a threshold ¢. In our
study we set ¢ = 0.1. Here, t5cqqy 1S the time step at which the system reaches its steady state. To compute
the time to convergence, we use the matlab tool STEPINF that first applies £'n(...) to transform the input
into a continuous representation. This transformation was used for N,¢g;.

Finally, in addition to the convergence time, we investigate the swarm performance in terms of the number
of retrieved items. The number of retrieved items is strongly related to the time to convergence, since a
faster convergence implies a higher efficiency in retrieving items. We compute this performance measure
using the cumulative sum of the items retrieved over time.

2.4 Simulation setup

We ran the simulations using ARGo a well-established physics-based simulator for swarm robotics
[26]. The values of particular parameter settings that can be used to reproduce our simulations and results

2 lhttps://www.mathworks.com/help/control/ref/stepinfo.html

3 http://www.argos-sim.info/
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are listed in Table [} Additionally, the reader is encouraged to find our project on the Open Science
FramworkEl to download the development sources and run the simulations.

Figure 2] displays snapshots from simulations with proximity (Figure [2(A)) and scale-free (Figure 2(B))
networks. The square-shaped arena is of the size L x L (L = 50 m) and consists of the nest A,, = 10 x50 m?
(gray colored floor in Figure@) in addition to the foraging environment Ay = 40 x 50 m? (white in Figure .
Inside the foraging environment, food items are uniformly distributed. When a robot brings a food item to
the nest, a new food item appears at a random location within the foraging environment, preventing item
depletion that might lead the foraging activity to halt.

(A) (B)

Figure 2. Illustrations of the arena taken from ARGoS simulations. Gray area: nest; white area: foraging
environment; black dots: items; blue objects: Footbots; light-blue lines: communication (range-and-bearing)
links. Top views onto the entire arena; the communication network is constructed in (A) using spatial
network given by the local robot interactions, and in (B) using Algorithm [T}, the inset shows a close-up
view on the robots. In all figures, the communication links are formed only for resting robots inside the
nest, as in our experiments moving robots neither broadcast nor listen to any messages. Therefore, it can
happen that although a robot is within the communication range of another, no communication link is
established between the two.

The robots are able to rapidly leave or return to the nest thanks to the phototaxis behavior. For that
purpose, light beacons are installed on one side of the nest, opposite to the foraging environment (yellow
dots at the top of Figure[2[(A) or Figure 2| B)). Robots are repelled from the lights whenever they need to
leave the nest, and attracted to the lights to return to the nest. The swarm consists of V,.,5,:s homogeneous
robots (we use Footbots [40]]). Robots are equipped with probabilistic controllers, which tune their behavior
to forage or rest based on the above mentioned probabilities (i.e., P._, r and Py_,;).

To implement the proposed networks (i.e. scale-free and proximity), we utilize the range-and-bearing
medium (that includes sensor and actuator) provided in ARGoS. However, this communication medium is
used differently for the two networks. In the case of proximity networks, the communication range of the

4 https://osf.i0/48b9%/
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Table 1. Robot and arena parameters.

Parameter Value
Robot parameters

Physical avoidance range 0.1 m
Communication range 1.25 m
Maximum moving speed I m/s
Minimum resting time 6, 100 s
Minimum unsuccessful foraging time 6 ¢ 500 s
Minimum distancing time 6 100 s
Individual cues i 7, 0.01
Social cues sy,s; {0.01,0.25,0.99}
Arena parameters

Total area of the arena A 50 x 50 m?
Area of the Nest A, 10 x 50 m?
Area of the Foraging environment Ay 40 x 50 m?
Number of robots N.gpots 950
Number of items Ntemns 30 or 300
Total experiment duration 7 10* ts

range-and-bearing medium is set to 1.25 m (as we can see in Table[I). In the case of the scale-free networks,
at each time step, we first obtain the connected components using the spatial proximity network, where the
robots communicate via the range-and-bearing medium within a radius of 1.25 m. In the same time step, for
each of these connected components, we create a scale-free network in which the connections can span over
the entire length of the nest, if the connected component spans over that area. Thus, the resulting scale-free
networks can include much longer ranges than 1.25 m. For implementing such a communication topology
in real-world swarms, it is possible to apply other communication systems than the range-and-bearing
medium, such as other radio communication technologies (e.g. the well-established wifi [41]), shared
memory [7] or promising concepts such as the augmented reality for Kilobots (ARK) [42].

3 RESULTS AND DISCUSSION

The goal of this study is to investigate the influence of the scale-free topology on the collective performance
and response of a swarm foraging in a dynamic environment. The dynamics of the environment is modeled
in terms of single and periodic changes in the food density. In robot swarms, the interaction among
individuals is mostly modeled using local communications, where each robot has a limited communication
range. The communication range is usually much smaller than the dimension of the world. The robot’s
neighborhood is defined as the set (or a subset) of robots that is located within its communication
range. In this study, besides local interactions, we make use of the well-known preferential attachment
mechanism (applied in Alg. (I} see Sec. to construct a scale-free topology that accelerates information
sharing. Hence, we investigate whether it may improve the efficiency of the swarm collective response to
environmental dynamics.

As mentioned above, we define the collective response in terms of the number of resting robots and
measure it as the change in this number over time. In our experiments, initially, the entire swarm is in the
resting state. In the following, a transient period begins, during which the swarm displays oscillations at the
group level. First, almost all robots begin foraging during the first 500 time steps (ts)—Note that a simulated
time step is one second, with one tick per second. Within the subsequent ~ 500 ts most of the swarm
individuals come back to the nest and switch to resting. Even though such collective behavior oscillates

Frontiers 9
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over several following time periods—due to the probabilistic nature of the robot controller— the coherence
increases rapidly and the swarm converges on a relatively stable number of resting robots. The duration
of this transient period is mostly shorter than 5 - 103 ts, after which we begin our measurements. Finally,
based on preliminary results, we set the swarm size to N = 950, which balances physical interference with
swarm performance and delivers a sufficiently large number of samples for statistically sound analysis.

We use two experimental settings. In the first setting, after the system converges on a number of resting
robots Nyest (number of foraging robots is then N,y = N — Npegst), a single external stimulus is applied.
This stimulus represents an increase in the number of food items Njzepns by the factor of 10 (from 30 to 300
items) at a particular time point ¢.,;+. In the second experimental settings, we challenge the swarm further
by applying a periodic change in the density of the food items, hence the benefit of a quicker response
becomes clearer. The periodic change is applied over periods of 2500 ts and can be of two types, either
increasing or decreasing the number of food items Njzeyn s, always by a factor of 10.

In each of the two experimental settings, two interaction networks are implemented, proximity network
(emerging from local interactions), and scale-free network (generated using preferential attachment). As
mentioned above, for the construction of scale-free networks, the connected components of the robots
resting at the nest site are used to impose the network topology. Over these networks the robots exchange
specific information about their success or failure of the latest foraging attempt seeking an accurate
estimation of the current situation in the foraging environment.

According to our experiments, there are two main cases, in which the influence of the communication
topology is negligible. These are (i) small social cues (i.e. with sy and s; values smaller than 0.01),
and (i1) small number of resting robots N,.s;. The first case is straightforward, as the social cues
decrease, the impact of the information obtained from other robots decreases, and hence the impact
of the interaction network on the emergent dynamics vanishes. The second case is associated with the
particular implementation of the scale-free communication network in the nest. Since the construction
of this network relies on the connected components present in the nest at every time step, small numbers
of resting robots result in scaling down the size of such connected components and hence topological
contribution becomes negligible. Therefore, as we aim to investigate the influence of the interaction
network on the emerging dynamics, we consider those cue configurations in which the social feedback
of the robot’s neighborhood has a distinguishable role in shaping its decision. This is achieved by setting
the social cues to have a clear advantage over the individual cues—i.e. sy » iy, s, » i,. For an extensive
discussion on the impact of cue values on swarm behavior in a similar settings of the foraging task
the interested reader is referred to [[18, 28]]. For the reasons mentioned above, we set the cue values to
sp = 0.25,5 = 0.25,iy = 0.01,4, = 0.01. Nevertheless, further below we will additionally compare
our results to those obtained with more extreme values of the social cues, i.e. sy = 0.01, s, = 0.01 and
sy =10.99, s, = 0.99.

The plots in Fig.|3|depict results obtained over 30 runs. They compare the emergent collective response of
the swarm to a single stimulus (i.e. change in food density) as well as to multiple stimuli when individuals
interact locally in comparison to interacting via scale-free topologies. Firstly, our results reveal a clear
impact of the network structure on the robot activation level across all types of stimuli (i.e. increasing or
decreasing food item density). This is illustrated through the number of resting robots being considerably
smaller when using the scale-free network as opposed to the proximity network throughout the entire
simulation time (see Fig. 3]A and B). Proximity networks in Fig. 3B show a non-adaptive swarm behavior
that is largely due to the very low number of foraging robots. When there are too few foraging robots, the
system tends to approach a global absorbing state in which robots cease to switch to foraging. In case of
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Figure 3. Swarm performance comparison between the scale-free networks (blue) and the proximity
networks (red). Top: Swarm collective response in terms of Nycs:. (A) single stimulus of item gain from
Nitems = 30 t0 Nigems = 300 at tor5 = 7500 ts, and (B) multiple stimuli are executed in intervals of
Aterip = 2500 ts. The items are repeatedly increased to Njzems = 300 (indicated by 2) or reduced to
Nitems = 30 (indicated by v). (C) Similar setting to (B), but starting from Njzems = 300 and changing
the items in an inverse order, as indicated by the ~ and v markers. Center: Swarm convergence time.
(D) Single stimulus of item gain, S is the index for the stimulus applied at t..;; = 7500. (E) Multiple
stimuli where items are repeatedly increased or reduced. S, 7 correspond to the seven stimuli applied
between t.-;; = 7500 ts and ¢t = 25000 ts in intervals of At..;; = 2500 ts, as in (B). (F) Similar to (E) but
with an inverse order, as in (C). Bottom: Cumulative sum of the retrieved items. (G) Scenario with a single
stimulus. (H) Scenario that starts with N;zems = 30, as in (B). (I) Scenario that starts with N;zenms = 300,
as in (C). In (A)-(C) and in (G)-(I), shaded areas indicate the confidence interval of 95%. All results were
averaged over 30 runs.

proximity networks in Fig.[3B, this tendency towards the global resting state is due to the initial low density
in food items (i.e. Njtemns = 30). Low Njzems leads to a large number of failed attempts to find and retrieve
them. Consequently, this increases Py_,, up to its maximum Py_,, = 1, pushing the robots to keep resting.
Thus, the subsequent increase in items to Njzepms = 300 is not sensed by the swarm. As an example, this
behavior is evident at ¢ = 7500 ts when N,.¢: did not decrease in response to the increasing Niten,s.
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Therefore, it is important to consider the robustness of the swarm behavior to initial conditions, prior
to the external stimulus. To this end, we inverted the changes of N5, starting with Njerms = 300,
reducing it to Njtems = 30 at t = 7500 ts, then increasing it back to Njems = 300, etc.. Under this specific
setting, foraging robots have a higher likelihood to find items than when the initial item density is as low
as Nitems = 30. Consequently, the returning robots broadcast a larger number of “success” messages,
increasing the robots’ probability to switch to foraging (P, r). Fig. [3(C shows that this configuration of
the initial conditions led to an adaptive swarm behavior for the case of proximity networks. This adaptive
behavior comes with a reduced time to convergence (see Fig. 3F vs. Fig.[3E) and a significantly higher
number of retrieved items (see Fig. [3[ vs. Fig. [3H). Nevertheless, with scale-free networks the collective
response not only remained more rapid but also appeared to be more robust to the initial conditions of the
system, as the trajectory of N, in Fig.[3[C is qualitatively similar to Fig. [3B. Nevertheless, the scale-free
networks display higher fluctuations of V,.s; compared to the relatively coherent decision achieved when
using proximity networks (Fig. [3]A-C). This is due to the high impact that a single hub can have on a large
population of the swarm.

The key contribution of the network topology is reflected in the time the swarm requires to build up
its collective response. When using scale-free networks, hubs—i.e. robots with an exceptionally high
connectivity degree—help accelerate the information propagation in two manners: (i) due to their high
connectivity degree, their individual experience is shared with a large number of robots within one time step.
(i1) Their presence creates a shorter average path of the network compared to proximity networks, which
allows any two robots to exchange information over a smaller number of hops (i.e. within fewer time steps).
As mentioned above, we use the settling time defined in Eq. () to compute the swarm’s convergence time
after each stimuli—i.e. change in the items’ density. Fig.|3ID shows the time it took the swarm to converge to
a steady number of resting/foraging robots after increasing the items at the foraging area from Njtepns = 30
to Nitems = 300 at time step At..;4 = 7500. Fig. E]E and F show the same measure for the repeated stimuli
of items increase and decrease, starting from Njtems = 30 (Fig. BE) and Njtepms = 300 (Fig. BF). In all
three findings, Fig. [3D-F, we can notice the significantly shorter convergence time when robots in the nest
are communicating using the scale-free network in comparison to the proximity network. These results
suggest a higher level of swarm adaptivity to dynamic environments under scale-free communications.
Furthermore, as shown in Fig. [3iG-L, using scale-free networks the cumulative sum of the retrieved items
is either considerably higher from the beginning or at the later stages of the experiment, compared to the
scenarios with proximity networks.

An important aspect to notice is the physical division between the site at which the information is to
harvest (i.e. the foraging environment), and the site at which the information is to exchange (i.e. the nest).
Usually, the communication speed is considerably higher than motion speed. However, specifically in the
foraging scenario, the communication speed is limited by the motion speed, since it is necessary for the
robot to travel across the foraging environment to reach the nest, where it can start communicating. One of
the clear consequences of this important remark is that even for the case of scale-free networks where the
collective response is accelerated, there is a considerably faster swarm reaction to an increase in the food
density compared to the reaction to a decrease (see the blue line in Fig. [3B). Before the increase of food
items, there were few foraging robots. Those robots consumed time to return to the nest, switch to resting,
inform their neighbors about their foraging experience, and, ultimately, convince more robots to leave the
nest in case of a successful foraging attempt. For scale-free networks this resulted in a rapid activation of
resting robots. Differently, collective reaction slowed down when the environmental change was a decrease
in food items. This behavior can be explained as follows: the large number of robots foraging while the
food density was high experienced the drop in the food density through their failed foraging attempts. Upon

This is a provisional file, not the final typeset article 12



358
359
360
361
362
363
364
365

366
367
368
369
370
371
372
373
374
375
376
377
378

379
380
381
382
383
384
385
386
387

388
389
390
391
392
393
394
395
396
397

398
399
400
401

Rausch et al. Running Title

returning to the nest, these robots led to considerably higher crowding at the nest entrance. This prolonged
the time that the robots needed to enter the nest and start communicating. Moreover, the higher N, the
higher the likelihood that there is one, giant, connected component inside the nest, spanning over a large
number of robots. If such a network is scale-free, the hubs have a high chance of influencing many robots
to switch to foraging. By contrast, a low N, often led to fragmented networks, reducing the influence of
hubs, lowering the number of switching robots and, thus, slowing down the collective response compared
to a high N,.s. Hence, the collective response time—even when using scale-free networks—is longer
when there are many robots foraging.

To obtain a closer look at the interaction network topology, we can analyze the degree distributions of
the resting robots interacting inside nest. We draw the degree distributions for different time steps that are
selected when the item density was both high (i.e. 300 items) and low (i.e. 30 items). As we can see in
Fig.BlA, scale-free networks strongly resemble a power-law distributed degree for all time steps at which
the networks are recorded. Similar consistent is the degree distribution of the proximity networks in Fig.
for all tested time steps. However, the degree distribution here appears closer to a Gaussian distribution
which is more symmetrical around the mean than the scale-free network and has fewer outliers. To get
a clearer look at the outliers, in Fig. 4|C-D, we show the communication degree using boxplots. For the
scale-free networks the density of outliers is notably large, the most extreme among those are the hubs
in the network. We can also notice a clear trend of a higher number of hubs when the number of resting
robots Nyeg 18 higher due to low Njzems. This density of outliers changes periodically between the external
stimuli .S; together with N,..4;. In the case of proximity networks, the boxplots show a relatively low density
of outliers and negligible changes with 5;.

Additionally, it is worthwhile considering the effect of rewiring on the collective response. As elaborated
in Sec.[2.2] Alg.[T]is applied at every time step as the robots are in motion. However, because Alg.[T|has a
stochastic component, the resulting network at time step ¢ is very likely to be different from ¢ — 1. Such
dynamic rewiring increases the probability that two remote robots share a link. Consequently, a random
robot is more likely to obtain information from spatially uncorrelated sources, i.e. it obtains a sample that
is more representative of the swarm opinion. This resembles the common ‘random mixing’ paradigm often
found in swarm robotics, stating that an encounter probability between two robots is the same for any pair
of robots. Thus, the adaptive behavior that follows from using Alg. (1| could be largely attributed to this
rewiring-induced opinion mixing.

To examine whether this may indeed be the case, we ran simulations with a modified version of Alg.[]|
where we replaced the preferential attachment component d/ Y ; d; by a real number p € {0.01,0.1}. Note
that while this modification aims at altering the network topology, the resulting alternative networks are
still regenerated at each time step, similar to scale-free networks, i.e. the notion of rewiring is preserved.
The results are shown in Fig. [5| The similarity to the scale-free networks scenario is particularly striking for
p = 0.01. When N, is low, it becomes difficult to separate a scale-free network (where the degrees are
power law distributed) from a small-world network (where the degree distribution is much less skewed, i.e.
more symmetric around the mean value). Therefore, for low NV, the impact of the preferential attachment
component in Alg. I{can be well approximated by a constant such as p = 0.01. More importantly, it shows
that the strong effect that dynamic rewiring has on swarm adaptivity and collective response.

A feature that frequently occurs in realistic communication is the packet loss. It occurs when a robot fails
to receive a message broadcast by a neighbor, due to radio-frequency interference or due to overflow of
a robot’s receiver queue. We implemented packet loss events by allowing the robots to ignore incoming
messages with probability p,,. Fig. |§] shows the results for the proximity and scale-free networks with
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Figure 4. Degree distributions of the networks within the nest at different time instances. (A) Scale-free
networks; (B) Proximity networks. At ¢ = 5000 ts and ¢ = 11250 ts there are Ny epms = 30 to retrieve,
while at ¢ = 8750 ts and ¢ = 13750 ts the item count 1S Nems = 300. Additionally, box plots for the
(C) scale-free and (D) proximity networks illustrate the presence of outliers for the different onsets of
stimuli Sy, 7 (starting at ¢..;; = 7500 ts and occuring in intervals of At..;; = 2500 ts). As expected, in
contrast to the proximity networks, in case of scale-free networks, the outliers (indicated by the + markers)
are so extreme that the boxes containing the mean values are barely recognizable at the bottom of plot (C).

ppi € {0.1,0.5}. Surprisingly, the swarm adaptivity considerably improves in case of proximity networks,
while with scale-free networks the swarm remains more robust to the influence of the packet loss. Higher
probabilities of packet loss appears to shorten the time to convergence and slightly increase the number
of collected items. One possible explanation for this behavior could be that by probabilistically ignoring
incoming messages the robots become to some extent able to reduce the correlation between their behavior
and that of their spatial neighbors. Synthetically generated networks, such as the scale-free networks
considered in this study, represent an extreme case of such spatial decorrelation. In contrast, in proximity
networks and absence of packet loss, spatial correlations are very high, leading to feedback mechanisms
that reduce sensitivity to new information. The presence of packet loss appears to create a middle ground
that bolsters the adaptive behavior at the swarm level. However, we only tested two values of p,,; and it is
possible that for p,; > 0.5 inverse effects could be observed. Finally, when resting state can be associated
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Figure 5. Comparison of the (A) swarm collective response, (B) time to convergence and (C) swarm
performance, between scale-free networks and random networks created with p = 0.01 and p = 0.1.

with low energy consumption, the behavior of the system in the presence of here considered p,; may
demonstrate a high level of efficiency, in terms of increasing N, .s; while preserving the high number of
retrieved items. Nevertheless, as mentioned above, the detailed investigation of the influence of packet
loss is beyond the scope of the current study and future research is needed to confirm the generality of
our ﬁndingﬂ Moreover, here we consider constant values of p,,; that are the same for every robot in the
swarm and that do not change based on the location of the robot or the number of communication links. In
contrast, in more realistic settings not only the packet loss but also p,, itself may have fluctuating values
depending on the situation and both could be profoundly difficult to control.

Finally, we compare the intensity of the collective response resulting from different social cues. As
mentioned above, social cues are the main driver of the dynamics to build up a faster response over the
interaction network. Our results show that higher social cues lead to a higher activation of the resting
robots, see Fig.|/| that shows the activation of the resting robots when setting sy = 0.99,s, = 0.99 in
comparison to the setting sy = 0.01,s, = 0.01 (results are averaged over 30 runs). High social cues
activate considerably more resting robots (i.e. reduces number of resting robots) than low cue values
(Fig.[TA). However, the convergence time with high cue values is comparable to the previously considered
default case of sy = s, = 0.25 (see Fig. ). The number of collected items overlaps for all three cue

values (see Fig.[7C).

4 CONCLUSION

The goal of this study is to investigate the role of network topology in influencing the propagation of
information in a foraging scenario with changing the availability of food items. Therefore, we have
addressed scenarios with dynamic environments, a realistic aspect of most real-world applications. We
considered two types of changes: a single abrupt change (referred to a single stimulus) and periodic
changes (multiple stimuli). We aimed to examine how scale-free networks, in particular, may accelerate the
spreading of information and hence enable a quicker collective response than proximity networks to the
global changes.

We have implemented scale-free networks across the robots resting in the nest, as the nest is usually
the part of the environment in which communication takes place. We applied the well-known preferential

3 To this end, the interested reader is encouraged to use our publicly available resources provided on https://osf.io/48b9h/.
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Figure 6. Swarm performance comparison between the scale-free networks (blue) and the proximity
networks in presence of packet loss, with packet loss probability p,; = 0.1 (red) and p,; = 0.5 (magenta) .
The number of items is repeatedly increased to Njepms = 300 (indicated by 2) or reduced to Njzepms = 30
(indicated by v). These repeating changes occur in intervals of At..;; = 2500 ts, starting at ¢..;; = 7500 ts.
Left column: Scenario with initially Njtems = 30. Right column: Scenario with initially Njzenms = 300;
(A)-(B) Swarm collective response in terms of N,¢s:. (C)-(D) Swarm convergence time. S7 7 correspond
to the seven stimuli between t..;; = 7500 ts and ¢ = 25000 ts. (E)-(F) Cumulative sum of the retrieved
items. In (A),(B),(E) and (F), the shaded areas indicate the confidence interval of 95%. All results represent
averages over 30 runs.

attachment technique to construct the scale-free topology. Following preferential attachment, the probability
of connecting to a robot is proportional to its current connectivity degree. Therefore, a number of robots
emerge to have a relatively high degree of connectivity, those are referred to as the hub robots. When
the density of food items changes at the foraging environment, and this change is reflected in the robots’
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Figure 7. Comparison of the (A) swarm collective response, (B) time to convergence and (C) swarm
performance, between different values of social cues for swarms communicating through scale-free
networks. Apart from sy = s, = 0.25 we consider two extreme cases: low values (sy = s, = 0.01) and
high values of social cues (sy = s, = 0.99). All results were averaged over 30 runs.

experience, scale-free networks enable a faster spreading of this information in the nest. This led to a
faster collective response compared to the scenarios in which interactions between the resting robots were
implemented using proximity networks.

Our results suggest that the use of scale-free networks can improve the collective response of the swarm
to changes in their dynamic environment, by improving the spread of shared information and reducing the
spatial correlation in the robots’ decisions. These two desired features in collective systems are achieved
due to the introduced possibility to communicate over long distances, as well as due to the dynamic
rewiring of the interaction network at every time step as a consequence of robot motion. These insights
were obtained by comparing the swarm behavior in scenarios with and without systematic packet loss,
in addition to comparing the swarm performance between scenarios with scale-free networks and with
alternative random networks. Furthermore, our findings showcase the effect of social cues on the intensity
of the collective response in presence of scale-free networks. Our results show that higher social cues lead
to a higher activation of the resting robots, due to the increased influence of their neighbors’ experience.

Although scale-free networks have shown to equip the swarm with a quicker reaction to changes in
dynamic environments—studied for the collective foraging task—this came at the cost of the coherence of
the collective response. Scale-free topologies led to more fluctuations of the swarm decision (whether to
rest or to forage). These fluctuations can be explained in terms of the high influence of particular individuals
(i.e. the hubs) on the opinions of a large population of the resting robots. Two particularly promising
research directions for future work include the design of self-organized algorithms to implement scale-free
topologies in robots swarms. Additionally, the design of efficient individual decision mechanisms that
helps the collective response to demonstrate a higher stability. Finally, generalizing this study to other
collective tasks such as site selection, flocking, and others may also lead to new interesting insights.
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