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ABSTRACT2

Group interactions are widely observed in nature to optimize a set of critical collective behaviors,3
most notably sensing and decision making in uncertain environments. Nevertheless, these4
interactions are commonly modeled using local (proximity) networks, in which individuals interact5
within a certain spatial range. Recently, other interaction topologies have been revealed to6
support the emergence of higher levels of scalability and rapid information exchange. One7
prominent example is scale-free networks. In this study, we aim to examine the impact of scale-8
free communication when implemented for a swarm foraging task in dynamic environments. We9
model dynamic (uncertain) environments in terms of changes in food density and analyze the10
collective response of a simulated swarm with communication topology given by either proximity11
or scale-free networks. Our results suggest that scale-free networks accelerate the process of12
building up a rapid collective response to cope with the environment changes. However, this13
comes at the cost of lower coherence of the collective decision. Moreover, our findings suggest14
that the use of scale-free networks can improve swarm performance due to two side-effects15
introduced by using long-range interactions and frequent network regeneration. The former16
is a topological consequence, while the latter is a necessity due to robot motion. These two17
effects lead to reduced spatial correlations of a robot’s behavior with its neighborhood and to18
an enhanced opinion mixing, i.e. more diversified information sampling. These insights were19
obtained by comparing the swarm performance in presence of scale-free networks to scenarios20
with alternative network topologies, and proximity networks with and without packet loss.21
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1 INTRODUCTION

The efficiency of the information sharing mechanisms used by individuals during group decision processes23
determines to a large extent the fitness of the group decision. In nature, collective systems consist of a high24
number of individuals living in large and unknown environments, and needing to perform complex tasks to25
survive. Among the many examples of collective decision-making is choosing a new site to build their home26
[1], or deciding among a number of foraging patches [2]. Despite the high diversity of tasks, uncertainty27
and complexity are common features. Hence, individuals apply information pooling to mitigate uncertainty28
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and increase decision accuracy [3]. Achieving efficient opinion sampling depends to a large extent on the29
network topology that defines the interaction structure and opinion sharing of these individuals [4, 5]. The30
use of such network is fundamental for collective decision-making. It is generally exploited at two stages31
of the process (i) when spreading information on one or multiple stimuli that are initially perceived by32
a limited number of individuals that are able to trigger the collective decision process—e.g. a predator33
attack—; and (ii) when spreading the individuals’ opinions or choices to achieve consensus [6].34

In artificial systems such as swarm robotics, collective decision-making is mostly designed in static35
environments [7], where options and their qualities are defined at the beginning and do not change over time.36
In these studies the focus is mainly on the design of efficient voting mechanisms that enable a high level37
of decision coherence within the shortest time possible [4]. Alternatively, other studies were addressing38
the design of decision strategies that tackle the accuracy vs. speed trade-off [8]—i.e. taking longer time to39
gather enough information and making more accurate decisions vs. exploiting the available information40
and taking the decision as soon as possible. In both cases, the speed of converging on a decision is a41
fundamental goal in the design of decision-making. The decision speed strongly depends on the interaction42
topology the individuals are part of, to spread stimuli or opinions during the decision-making process.43
Interactions in collective systems are frequently modeled using local (i.e. proximity) communication, where44
the neighborhood of an individual is defined spatially based on their interaction range, i.e. interacting45
with all peers within the individual’s communication radius. Nevertheless, other interaction models such46
as scale-free networks were revealed in several real-world examples [9, 10]. A comprehensive review47
on scale-free phenomena in a more general context can be found in [11]. In various works, scale-free48
networks enable scalable, fast and efficient information transfer. For example, in [12], authors showed how49
the betweenness centrality scales with the scale-free exponent. Other works showed how the ultrasmall50
diameter of the scale-free networks contributes to their efficiency in information transmission [13, 14].51
Finally, scale-free topologies were studied in natural collective systems such as in [15]. In this work, the52
authors studied starlings flocks and suggest that collective response to predator’s attacks may be achieved53
through scale-free behavioral correlations. Based on these studies, we extend the application of scale-free54
networks to artificial swarms in order to investigate the role these networks can play in improving a swarm’s55
collective decision-making process.56

A key aspect of scale-free networks is the presence of hubs—i.e. nodes with a comparably high57
connectivity degree—[16, 17]. Hubs represent a small percentage of the network nodes, however, their high58
connectivity leads to a small network diameter. This facilitates efficient communication by enabling any59
two random nodes to share information over only few hops, resulting in fast information transfer [13]. In60
this paper, we exploit this critical feature of scale-free networks to help collective systems to faster respond61
to changes in dynamic environments. In dynamic environments, conditions change over time and hence,62
the collective system needs to adapt its behavior within a short period of time in order to survive. We refer63
to this as the collective response time. In our study, this is the time required for the group to collectively64
change the intensity of its foraging activities as a response to a change in the availability of the food items.65

Among many examples of collective tasks in natural systems, we select foraging [18] and perform our66
study using a simulated population of swarming robots. Foraging is a complex task used by many species67
to retrieve food to their homes, but beyond that it is a metaphor for many real-world robotics tasks such68
as search and rescue, retrieve materials for collective construction and others. In foraging, individuals69
(robots) need to continuously make a decision between staying at their base or leaving to forage for food70
items. A large body of literature has been dedicated to investigate foraging in artificial systems such as71
swarm robotics. These studies have addressed various research questions such as the foraging performance72
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under the influence of physical robot interference [19, 20], the multi-foraging task [21]—i.e. the foraging73
for different types of items—or consensus achievement [22, 23]. Additionally, some studies have focused74
on how to optimize the task allocation in foraging using cost functions [24, 25]. Also how to investigate75
simple probabilistic models that rely on the foraging success probability in achieving an efficient foraging76
behavior [26]. Other studies have gone further to investigate whether the performance of swarms in the77
foraging tasks bears a particular characteristic distribution (e.g. a power law) for any of its time or space78
features [27, 28]. Despite this intensive research effort, foraging of robot swarms in dynamic environments79
and the influence of different interaction models are still not well understood. However, these questions are80
paramount, given the prevalence of scale-free phenomena in real-world systems and admitting that most81
real environments are dynamic. Therefore, in this paper, we focus on the fundamental question of how the82
integration of a scale-free interaction structure may influence the collective response of simulated swarms83
to changes in food density within the foraging environment. We approach this question by analyzing84
the speed and coherence of the collective response to those changes. We begin with defining the robot85
(microscopic) and the swarm (macroscopic) behaviors in Sec. 2.1 and Sec. 2.3, respectively. The details on86
generating scale-free networks from local neighborhoods are given in Sec. 2.2. In Sec. 2.4, we describe the87
experimental setup. Thereafter, in Sec. 3 we compare the collective response of the swarm in presence and88
absence of scale-free interactions. We discuss our findings that suggest that the use of scale-free interactions89
can be advantageous due to (i) reduced correlations between a robot’s decisions and those of its spatial90
neighbors and (ii) enhanced information spread through long-range interactions and frequent rewiring of91
communication links. These insights are obtained by comparing the influence of scale-free networks to92
scenarios with alternative random networks as well as scenarios that include packet loss. Conclusions are93
drawn in Sec. 4.94

2 METHODS

2.1 Robot behavior95

Robots are placed in an arena that is divided into two areas: the nest and the foraging environment.96
Inspired by the behavior observed in harvester ants Pogonomyrmex barbatus [29, 30], each robot can switch97
between two essential states: resting and foraging. In the foraging state, the robot attempts to find a food98
item inside the foraging environment by performing a pseudo-random walk. In particular, the robot moves99
on a straight line until it encounters another robot or an obstacle (e.g. a wall), in which case a collision100
avoidance maneuver is initiated. By executing this maneuver, the robot attempts to move in the direction101
of least physical interference, as sensed by its proximity sensors. After executing the collision avoidance102
maneuver, the robot goes back to its standard motion following a straight line. When the robot encounters a103
food item, it collects this item and retrieves it back to the nest where the robot rests for a given period of104
time θr.105

In the resting state, the robot remains inside the nest, which is the only area where communication with106
other robots can take place. This is inspired by several natural systems, in which the communication occurs107
mainly inside the nest or the hive [18, 31, 32, 33]. This approach accommodates two relevant properties of108
foraging systems: (i) it is common that the foraging environment is significantly larger than the nest area,109
and hence, individual encountering rates outside the nest are negligibly low. (ii) Due to the high density of110
individuals inside the nest there is a high likelihood of interaction between individuals that have explored111
different parts of the foraging environment, and hence a more diversified sample of information about the112
environment can be collected.113
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Robots can communicate only with neighbors that are within a direct line of sight, sharing their individual114
experiences. This is a continuous process—i.e. each robot broadcasts at every time step its previous115
experience (success or failure in finding a food item) until it switches again to the foraging state. Continuous116
communication activity is a required choice of the experiment design to research the role of network117
topology in the emergent behavior [28].118

All robots, in our study, are identical and each robot is a probabilistic finite state machine. In particular,
a robot’s behavior is shaped by two switching probabilities that describe at every time step the robot’s
likelihood to switch from foraging to resting (PfÑr) or the opposite (PrÑf ). These probabilities are updated
differently at the robot’s resting and foraging states. At the foraging state, the switching probabilities are
updated using the robot’s foraging experience. The impact of this experience on the robot’s decision-making
is given by the set of two individual cues

 

if , ir
(

P R`0 ˆ R`0 . More specifically, the cue if defines a
numerical value by which the probability to switch from resting to foraging (PrÑf ) is increased when the
robot has experienced foraging success—i.e. a discovered food item during the latest foraging attempt. The
same value is used to decrease this switching probability in case of a failed foraging attempt, i.e. when the
robot has spent a specific time (θf ) foraging without finding a food item. The cue ir updates the robot’s
switching probability from foraging to resting (PfÑr) in a manner that is inverse to if . Besides updating the
switching probabilities at the foraging state, the robot updates those while resting. This update is performed
using the experience received from the robot’s neighbors and is numerically given by two social cues
 

sf , sr
(

P R`0 ˆR`0 . The social cue sf is used to update the switching probability from resting to foraging
(i.e. PrÑf ) by increasing (decreasing) PrÑf when the robot’s neighbors report primarily on successful
(failed) foraging attempts. Whereas, sr is used to update the switching probability from foraging to resting
(i.e. PfÑr), inversely to sf . In the following we define how the switching probabilities are updated at every
simulation step (as described in [28]; to prevent divergence, both probabilities were truncated between zero
and one):

PrÑf pt` 1q “ PrÑf ptq ` δηptqsf ` δφptqif (1)

PfÑrpt` 1q “ PfÑrptq ´ δηptqsr ´ δφptqir, (2)

where δηptq is the difference between the successful and the failed foraging attempts communicated to the119
robot by its neighbors. Hence, it has a positive sign when there are more successful attempts than failed120
ones and a negative sign otherwise. Consequently, the former increases the switching probability from121
resting to foraging and the latter increases the switching probability from foraging to resting. δηptq “ 0 if122
the robot is not resting. Additionally, the robot’s individual experience during a foraging attempt that starts123
at tf is defined as follows:124

δφptq “

$

’

&

’

%

`1, at tif
0, if tf ă t ď tf ` θf & no item is found
´1, if t ą tf ` θf & the robot is still foraging

(3)

where tif is the (unique) time step at which the robot finds an item while in foraging state. While in the125
foraging state, the robot may find an item at any time tf ă tif (i.e. it could also happen that tf ` θf ă tif ).126
After finding an item, i.e. subsequently to tif , the robot leaves the foraging state. If no item is found and127
the foraging time crosses the threshold θf , then δφptq “ ´1. This increases PfÑrptq at every time step128
t ą tf ` θf , guaranteeing that the robot will probabilistically leave the foraging state at some t, even129
without finding an item. δφptq “ 0 outside of the foraging state.130
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The robot behavior is illustrated in Fig. 1 using a state diagram. It includes the following states:131
(i) foraging: after having spent at least θr time steps resting, the robot switches with probability PrÑf132
from resting to foraging. It attempts to search the foraging area for a food item to retrieve to the nest.133
If the robot fails to find a food item within a predefined time θf , it switches with probability PfÑr to134
homing; (ii) homing: in this transitional state the robot returns to the nest, with δηptq “ 0 and δφptq “ 0; as135
soon as the robot reaches nest, it switches to distancing; (iii) distancing: having returned to the nest, the136
robot searches for an empty spot in the nest where it can rest; similar to the homing state, distancing is137
a transitional state with δηptq “ 0 and δφptq “ 0; distancing terminates after θd time steps and the robot138
switches to resting; (iv) resting: subsequent to distancing the robot rests for at least θr time steps after139
which it switches with probability PrÑf to foraging. A resting robot broadcasts ‘success’ (or ‘failure’) to140
its neighbors if the latest foraging attempt was successful (or not), respectively. If the robot failed to leave141
the nest in state (i), it has no information about the foraging environment and, thus, does not broadcast any142
message. Throughout the entire experiment, the robot performs collision avoidance maneuvers if other143
robots or walls enter its proximity sensors’ range (not shown in Fig. 1 for better readability).

Figure 1. The state transition diagram of a robot performing the foraging task.

144

2.2 Robot scale-free communication network145

In this section, we describe the design and implementation of the algorithm that leads to a scale-free146
robot communication network. An implementation of this algorithm in C++ is publicly available online1147
[34]. The generation of a scale-free network from local neighborhoods is an iterative process, where at148
each time step t the robot communication is updated according to the following procedure:149

1. Identify all connected components (CCs) in the resting swarm using depth-first-search. A CC is the150
maximal set of nodes (robots), where each two nodes are connected through a finite path. The CCs are151
initially derived from the spatial networks in which the robots are neighbors if they are within each152
other’s communication radius.153

2. Generate the scale-free network topology within a CC using preferential attachment [16] as154
summarized in Alg. 1. This algorithm is largely inspired by previously proposed approaches [35, 36].155

1 https://osf.io/48b9h/
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We begin by selecting a sink node νs,0 which is the node with the highest number of neighbors within156
its spatial proximity—i.e. within the initial radius of rs “ 1.25 m. Within this rs, each spatial neighbor157
νs,i is linked to νs,0, creating an initial sink network Gs. Next, we increase rs by 0.2 m. Due to this158
increase, new nodes νnew enter rs. Each νnew is connected to any νs following preferential attachment.159
In a preferential attachment process, the higher the degree of node νs compared to the sum of all node160
degrees within Gs, the more likely is νnew to connect to νs. After all νnew were added to Gs, rs is161
increased again by 0.2 m. This process continues until Gs is of the same size as CC.162

3. Repeat 2. for every CC in the swarm.163

In Alg. 1, Nsink is the size of the sink network Gs, in terms of the number of nodes. Similarly, NCC164
is the size of the selected connected component; ds is the degree of node νs, and

ř

i di is the sum over165
all degrees in the sink-network. Note that the robot communication approaches the scale-free network166
topology only for large enough CC. However, due to the relatively small area of the nest the robots had a167
high tendency to self-aggregate into a giant connected component.168

To test how successful Alg. 1 was in generating a scale-free topology, we recorded the degree distributions169
at t “ 10 of 1000 simulation runs. At t “ 10 the large majority of robots was still resting inside the170
nest, providing us with at least one large CC. Scale-free networks are characterized by the power law171
degree distribution. Thus, we tested whether our recorded degree distributions follow the power law using172
previously established statistical methods [37, 28, 38]. Essentially, this statistical analysis is a highly173
rigorous power law fitting procedure that consists of three critical steps: (i) testing whether the shape of the174
distribution is due to random fluctuations, i.e. testing the goodness-of-fit given by a p-value. We proceed to175
the next step only if p ă 0.1, otherwise the power law fit is considered unreliable. (ii) As the power law176
behavior is commonly found at the tail of the distribution, we proceed to the third step only if the data177
that is fit the power law behavior represents at least 10% of all data points. (iii) Finally, we compare the178
power law fit to other common distributions (such as the exponential or the log-normal) that may also tend179
to resemble a linear shape on a log-log scale (which is characteristic for the power law) [37, 39]. This is180
done by considering the log-likelihood ratio of each pair of distributions, which has a negative value if181
the distribution we compare the power law to is a significantly better fit. Consequently, the hypothesis182
that the data is power law distributed is not rejected only if this log-likelihood ratio is positive and only if183
we did not reject it at steps (i) and (ii). The result of the testing procedure can be captured by a numeric184
value to categorize whether the support for the hypothesis is not present, weak, moderate or strong (for185
more details see [28]). The test results for Alg. 1 have shown a statistically sound support for the power186
law distribution in 76% of tests (we ran 1000 tests), suggesting that Alg. 1 was considerably successful in187
creating scale-free networks.188

Alternatively, one can use Alg. 1 to construct networks with a degree distribution that is less skewed189
than power law and more symmetric around the mean degree, i.e. networks that resemble more closely190
the well-known small-world networks. To this end, one can simply replace the preferential attachment191
component ds{

ř

i di by a real number.192

2.3 Swarm behavior193

At the swarm level, the foraging behavior emerges as a result of complex interactions between the robots194
as well as between robots and their environment. As mentioned above, we evaluate this performance in195
dynamic environments, in which the food density is subject to single and periodic changes. The quality of196
the emergent performance is evaluated with respect to the swarm response (adaptivity) to the changing197
number of items in the foraging environment. In particular, we define the swarm performance with respect198
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Algorithm 1: Pseudo-code for the implementation of the preferential attachment, executed at each time
step.
initialize a sink network Gs Ď CC:
Choose a node ν P CC with the highest degree and connect it to its spatial neighbors
within the radius rs around ν.

while Nsink ă Ncc do
increase rs
for each νnew P CC do

for each νs P Gs do
create a bi-directional link between νnew and νs with probability PBA “ ds{

ř

i di
if no link created then

PBA Ð PBA ` ds{
ř

i di
end

end
end

end

to (i) the speed of the swarm’s collective response, and (ii) the number of retrieved items. The collective199
response is quantified using the number of resting robots at any time step. For instance, in case of a sudden200
high availability of food items an ideal swarm’s response would be to allocate more robots to the foraging201
state shortly after the increase in the number of food items is detected.202

We borrow the term of settling time from control theory to measure the time of the swarm’s collective203
response, referred to as the convergence time—i.e. the time the swarm needs to adapt the number of204
resting/foraging robots to any change in the items density. The settling time is defined as the time elapsed205
from the moment of applying a particular stimulus (i.e. changing the items’ density) to the time the system206
output (i.e. number of robots Nrest that are in the resting state) reaches and remains within a specified207
margin of error. Hence, the time to convergence is computed as in the following:208

tconv “ inftSu, where S “ tt : |FnpNrestptqq ´ FnpNrestptsteadyqq| ă ζu, (4)

where inftSu is the greatest lower bound of the set S, and the set S includes all time steps t at which209
the difference between the transformed number of resting robots at a specific time step Nrestptq and the210
transformed number of resting robots at the steady state Nrestptsteadyq is smaller than a threshold ζ . In our211
study we set ζ “ 0.1. Here, tsteady is the time step at which the system reaches its steady state. To compute212
the time to convergence, we use the matlab tool STEPINFO2, that first applies Fnp...q to transform the input213
into a continuous representation. This transformation was used for Nrest.214

Finally, in addition to the convergence time, we investigate the swarm performance in terms of the number215
of retrieved items. The number of retrieved items is strongly related to the time to convergence, since a216
faster convergence implies a higher efficiency in retrieving items. We compute this performance measure217
using the cumulative sum of the items retrieved over time.218

2.4 Simulation setup219

We ran the simulations using ARGoS3, a well-established physics-based simulator for swarm robotics220
[26]. The values of particular parameter settings that can be used to reproduce our simulations and results221

2 https://www.mathworks.com/help/control/ref/stepinfo.html
3 http://www.argos-sim.info/
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are listed in Table 1. Additionally, the reader is encouraged to find our project on the Open Science222
Framwork4 [34] to download the development sources and run the simulations.223

Figure 2 displays snapshots from simulations with proximity (Figure 2(A)) and scale-free (Figure 2(B))224
networks. The square-shaped arena is of the size LˆL (L “ 50 m) and consists of the nestAn “ 10ˆ50 m2225
(gray colored floor in Figure 2) in addition to the foraging environmentAf “ 40ˆ50 m2 (white in Figure 2).226
Inside the foraging environment, food items are uniformly distributed. When a robot brings a food item to227
the nest, a new food item appears at a random location within the foraging environment, preventing item228
depletion that might lead the foraging activity to halt.229

Figure 2. Illustrations of the arena taken from ARGoS simulations. Gray area: nest; white area: foraging
environment; black dots: items; blue objects: Footbots; light-blue lines: communication (range-and-bearing)
links. Top views onto the entire arena; the communication network is constructed in (A) using spatial
network given by the local robot interactions, and in (B) using Algorithm 1; the inset shows a close-up
view on the robots. In all figures, the communication links are formed only for resting robots inside the
nest, as in our experiments moving robots neither broadcast nor listen to any messages. Therefore, it can
happen that although a robot is within the communication range of another, no communication link is
established between the two.

The robots are able to rapidly leave or return to the nest thanks to the phototaxis behavior. For that230
purpose, light beacons are installed on one side of the nest, opposite to the foraging environment (yellow231
dots at the top of Figure 2(A) or Figure 2(B)). Robots are repelled from the lights whenever they need to232
leave the nest, and attracted to the lights to return to the nest. The swarm consists of Nrobots homogeneous233
robots (we use Footbots [40]). Robots are equipped with probabilistic controllers, which tune their behavior234
to forage or rest based on the above mentioned probabilities (i.e., PrÑf and PfÑr).235

To implement the proposed networks (i.e. scale-free and proximity), we utilize the range-and-bearing236
medium (that includes sensor and actuator) provided in ARGoS. However, this communication medium is237
used differently for the two networks. In the case of proximity networks, the communication range of the238

4 https://osf.io/48b9h/
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Table 1. Robot and arena parameters.
Parameter Value
Robot parameters
Physical avoidance range 0.1 m
Communication range 1.25 m
Maximum moving speed 1 m{s
Minimum resting time θr 100 s
Minimum unsuccessful foraging time θf 500 s
Minimum distancing time θd 100 s
Individual cues if ,ir 0.01
Social cues sf ,sr t0.01, 0.25, 0.99u
Arena parameters
Total area of the arena A 50ˆ 50 m2

Area of the Nest An 10ˆ 50 m2

Area of the Foraging environment Af 40ˆ 50 m2

Number of robots Nrobots 950
Number of items Nitems 30 or 300
Total experiment duration T 104 ts

range-and-bearing medium is set to 1.25 m (as we can see in Table 1). In the case of the scale-free networks,239
at each time step, we first obtain the connected components using the spatial proximity network, where the240
robots communicate via the range-and-bearing medium within a radius of 1.25 m. In the same time step, for241
each of these connected components, we create a scale-free network in which the connections can span over242
the entire length of the nest, if the connected component spans over that area. Thus, the resulting scale-free243
networks can include much longer ranges than 1.25 m. For implementing such a communication topology244
in real-world swarms, it is possible to apply other communication systems than the range-and-bearing245
medium, such as other radio communication technologies (e.g. the well-established wifi [41]), shared246
memory [7] or promising concepts such as the augmented reality for Kilobots (ARK) [42].247

3 RESULTS AND DISCUSSION

The goal of this study is to investigate the influence of the scale-free topology on the collective performance248
and response of a swarm foraging in a dynamic environment. The dynamics of the environment is modeled249
in terms of single and periodic changes in the food density. In robot swarms, the interaction among250
individuals is mostly modeled using local communications, where each robot has a limited communication251
range. The communication range is usually much smaller than the dimension of the world. The robot’s252
neighborhood is defined as the set (or a subset) of robots that is located within its communication253
range. In this study, besides local interactions, we make use of the well-known preferential attachment254
mechanism (applied in Alg. 1, see Sec. 2.2) to construct a scale-free topology that accelerates information255
sharing. Hence, we investigate whether it may improve the efficiency of the swarm collective response to256
environmental dynamics.257

As mentioned above, we define the collective response in terms of the number of resting robots and258
measure it as the change in this number over time. In our experiments, initially, the entire swarm is in the259
resting state. In the following, a transient period begins, during which the swarm displays oscillations at the260
group level. First, almost all robots begin foraging during the first 500 time steps (ts)—Note that a simulated261
time step is one second, with one tick per second. Within the subsequent « 500 ts most of the swarm262
individuals come back to the nest and switch to resting. Even though such collective behavior oscillates263
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over several following time periods—due to the probabilistic nature of the robot controller— the coherence264
increases rapidly and the swarm converges on a relatively stable number of resting robots. The duration265
of this transient period is mostly shorter than 5 ¨ 103 ts, after which we begin our measurements. Finally,266
based on preliminary results, we set the swarm size to N “ 950, which balances physical interference with267
swarm performance and delivers a sufficiently large number of samples for statistically sound analysis.268

We use two experimental settings. In the first setting, after the system converges on a number of resting269
robots Nrest (number of foraging robots is then Nforg “ N ´Nrest), a single external stimulus is applied.270
This stimulus represents an increase in the number of food items Nitems by the factor of 10 (from 30 to 300271
items) at a particular time point tcrit. In the second experimental settings, we challenge the swarm further272
by applying a periodic change in the density of the food items, hence the benefit of a quicker response273
becomes clearer. The periodic change is applied over periods of 2500 ts and can be of two types, either274
increasing or decreasing the number of food items Nitems, always by a factor of 10.275

In each of the two experimental settings, two interaction networks are implemented, proximity network276
(emerging from local interactions), and scale-free network (generated using preferential attachment). As277
mentioned above, for the construction of scale-free networks, the connected components of the robots278
resting at the nest site are used to impose the network topology. Over these networks the robots exchange279
specific information about their success or failure of the latest foraging attempt seeking an accurate280
estimation of the current situation in the foraging environment.281

According to our experiments, there are two main cases, in which the influence of the communication282
topology is negligible. These are (i) small social cues (i.e. with sf and si values smaller than 0.01),283
and (ii) small number of resting robots Nrest. The first case is straightforward, as the social cues284
decrease, the impact of the information obtained from other robots decreases, and hence the impact285
of the interaction network on the emergent dynamics vanishes. The second case is associated with the286
particular implementation of the scale-free communication network in the nest. Since the construction287
of this network relies on the connected components present in the nest at every time step, small numbers288
of resting robots result in scaling down the size of such connected components and hence topological289
contribution becomes negligible. Therefore, as we aim to investigate the influence of the interaction290
network on the emerging dynamics, we consider those cue configurations in which the social feedback291
of the robot’s neighborhood has a distinguishable role in shaping its decision. This is achieved by setting292
the social cues to have a clear advantage over the individual cues—i.e. sf " if , sr " ir. For an extensive293
discussion on the impact of cue values on swarm behavior in a similar settings of the foraging task294
the interested reader is referred to [18, 28]. For the reasons mentioned above, we set the cue values to295
sf “ 0.25, sr “ 0.25, if “ 0.01, ir “ 0.01. Nevertheless, further below we will additionally compare296
our results to those obtained with more extreme values of the social cues, i.e. sf “ 0.01, sr “ 0.01 and297
sf “ 0.99, sr “ 0.99.298

The plots in Fig. 3 depict results obtained over 30 runs. They compare the emergent collective response of299
the swarm to a single stimulus (i.e. change in food density) as well as to multiple stimuli when individuals300
interact locally in comparison to interacting via scale-free topologies. Firstly, our results reveal a clear301
impact of the network structure on the robot activation level across all types of stimuli (i.e. increasing or302
decreasing food item density). This is illustrated through the number of resting robots being considerably303
smaller when using the scale-free network as opposed to the proximity network throughout the entire304
simulation time (see Fig. 3A and B). Proximity networks in Fig. 3B show a non-adaptive swarm behavior305
that is largely due to the very low number of foraging robots. When there are too few foraging robots, the306
system tends to approach a global absorbing state in which robots cease to switch to foraging. In case of307
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Figure 3. Swarm performance comparison between the scale-free networks (blue) and the proximity
networks (red). Top: Swarm collective response in terms of Nrest. (A) single stimulus of item gain from
Nitems “ 30 to Nitems “ 300 at tcrit “ 7500 ts, and (B) multiple stimuli are executed in intervals of
∆tcrit “ 2500 ts. The items are repeatedly increased to Nitems “ 300 (indicated by Ÿ) or reduced to
Nitems “ 30 (indicated by Ź). (C) Similar setting to (B), but starting from Nitems “ 300 and changing
the items in an inverse order, as indicated by the Ÿ and Ź markers. Center: Swarm convergence time.
(D) Single stimulus of item gain, S1 is the index for the stimulus applied at tcrit “ 7500. (E) Multiple
stimuli where items are repeatedly increased or reduced. S1...7 correspond to the seven stimuli applied
between tcrit “ 7500 ts and t “ 25000 ts in intervals of ∆tcrit “ 2500 ts, as in (B). (F) Similar to (E) but
with an inverse order, as in (C). Bottom: Cumulative sum of the retrieved items. (G) Scenario with a single
stimulus. (H) Scenario that starts with Nitems “ 30, as in (B). (I) Scenario that starts with Nitems “ 300,
as in (C). In (A)-(C) and in (G)-(I), shaded areas indicate the confidence interval of 95%. All results were
averaged over 30 runs.

proximity networks in Fig. 3B, this tendency towards the global resting state is due to the initial low density308
in food items (i.e. Nitems “ 30). Low Nitems leads to a large number of failed attempts to find and retrieve309
them. Consequently, this increases PfÑr up to its maximum PfÑr “ 1, pushing the robots to keep resting.310
Thus, the subsequent increase in items to Nitems “ 300 is not sensed by the swarm. As an example, this311
behavior is evident at t “ 7500 ts when Nrest did not decrease in response to the increasing Nitems.312
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Therefore, it is important to consider the robustness of the swarm behavior to initial conditions, prior313
to the external stimulus. To this end, we inverted the changes of Nitems, starting with Nitems “ 300,314
reducing it to Nitems “ 30 at t “ 7500 ts, then increasing it back to Nitems “ 300, etc.. Under this specific315
setting, foraging robots have a higher likelihood to find items than when the initial item density is as low316
as Nitems “ 30. Consequently, the returning robots broadcast a larger number of “success” messages,317
increasing the robots’ probability to switch to foraging (PrÑf ). Fig. 3C shows that this configuration of318
the initial conditions led to an adaptive swarm behavior for the case of proximity networks. This adaptive319
behavior comes with a reduced time to convergence (see Fig. 3F vs. Fig. 3E) and a significantly higher320
number of retrieved items (see Fig. 3I vs. Fig. 3H). Nevertheless, with scale-free networks the collective321
response not only remained more rapid but also appeared to be more robust to the initial conditions of the322
system, as the trajectory of Nrest in Fig. 3C is qualitatively similar to Fig. 3B. Nevertheless, the scale-free323
networks display higher fluctuations of Nrest compared to the relatively coherent decision achieved when324
using proximity networks (Fig. 3A-C). This is due to the high impact that a single hub can have on a large325
population of the swarm.326

The key contribution of the network topology is reflected in the time the swarm requires to build up327
its collective response. When using scale-free networks, hubs—i.e. robots with an exceptionally high328
connectivity degree—help accelerate the information propagation in two manners: (i) due to their high329
connectivity degree, their individual experience is shared with a large number of robots within one time step.330
(ii) Their presence creates a shorter average path of the network compared to proximity networks, which331
allows any two robots to exchange information over a smaller number of hops (i.e. within fewer time steps).332
As mentioned above, we use the settling time defined in Eq. (4) to compute the swarm’s convergence time333
after each stimuli—i.e. change in the items’ density. Fig. 3D shows the time it took the swarm to converge to334
a steady number of resting/foraging robots after increasing the items at the foraging area from Nitems “ 30335
to Nitems “ 300 at time step ∆tcrit “ 7500. Fig. 3E and F show the same measure for the repeated stimuli336
of items increase and decrease, starting from Nitems “ 30 (Fig. 3E) and Nitems “ 300 (Fig. 3F). In all337
three findings, Fig. 3D-F, we can notice the significantly shorter convergence time when robots in the nest338
are communicating using the scale-free network in comparison to the proximity network. These results339
suggest a higher level of swarm adaptivity to dynamic environments under scale-free communications.340
Furthermore, as shown in Fig. 3G-I, using scale-free networks the cumulative sum of the retrieved items341
is either considerably higher from the beginning or at the later stages of the experiment, compared to the342
scenarios with proximity networks.343

An important aspect to notice is the physical division between the site at which the information is to344
harvest (i.e. the foraging environment), and the site at which the information is to exchange (i.e. the nest).345
Usually, the communication speed is considerably higher than motion speed. However, specifically in the346
foraging scenario, the communication speed is limited by the motion speed, since it is necessary for the347
robot to travel across the foraging environment to reach the nest, where it can start communicating. One of348
the clear consequences of this important remark is that even for the case of scale-free networks where the349
collective response is accelerated, there is a considerably faster swarm reaction to an increase in the food350
density compared to the reaction to a decrease (see the blue line in Fig. 3B). Before the increase of food351
items, there were few foraging robots. Those robots consumed time to return to the nest, switch to resting,352
inform their neighbors about their foraging experience, and, ultimately, convince more robots to leave the353
nest in case of a successful foraging attempt. For scale-free networks this resulted in a rapid activation of354
resting robots. Differently, collective reaction slowed down when the environmental change was a decrease355
in food items. This behavior can be explained as follows: the large number of robots foraging while the356
food density was high experienced the drop in the food density through their failed foraging attempts. Upon357
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returning to the nest, these robots led to considerably higher crowding at the nest entrance. This prolonged358
the time that the robots needed to enter the nest and start communicating. Moreover, the higher Nrest the359
higher the likelihood that there is one, giant, connected component inside the nest, spanning over a large360
number of robots. If such a network is scale-free, the hubs have a high chance of influencing many robots361
to switch to foraging. By contrast, a low Nrest often led to fragmented networks, reducing the influence of362
hubs, lowering the number of switching robots and, thus, slowing down the collective response compared363
to a high Nrest. Hence, the collective response time—even when using scale-free networks—is longer364
when there are many robots foraging.365

To obtain a closer look at the interaction network topology, we can analyze the degree distributions of366
the resting robots interacting inside nest. We draw the degree distributions for different time steps that are367
selected when the item density was both high (i.e. 300 items) and low (i.e. 30 items). As we can see in368
Fig. 4A, scale-free networks strongly resemble a power-law distributed degree for all time steps at which369
the networks are recorded. Similar consistent is the degree distribution of the proximity networks in Fig. 4B370
for all tested time steps. However, the degree distribution here appears closer to a Gaussian distribution371
which is more symmetrical around the mean than the scale-free network and has fewer outliers. To get372
a clearer look at the outliers, in Fig. 4C-D, we show the communication degree using boxplots. For the373
scale-free networks the density of outliers is notably large, the most extreme among those are the hubs374
in the network. We can also notice a clear trend of a higher number of hubs when the number of resting375
robots Nrest is higher due to low Nitems. This density of outliers changes periodically between the external376
stimuli Si together with Nrest. In the case of proximity networks, the boxplots show a relatively low density377
of outliers and negligible changes with Si.378

Additionally, it is worthwhile considering the effect of rewiring on the collective response. As elaborated379
in Sec. 2.2, Alg. 1 is applied at every time step as the robots are in motion. However, because Alg. 1 has a380
stochastic component, the resulting network at time step t is very likely to be different from t´ 1. Such381
dynamic rewiring increases the probability that two remote robots share a link. Consequently, a random382
robot is more likely to obtain information from spatially uncorrelated sources, i.e. it obtains a sample that383
is more representative of the swarm opinion. This resembles the common ‘random mixing’ paradigm often384
found in swarm robotics, stating that an encounter probability between two robots is the same for any pair385
of robots. Thus, the adaptive behavior that follows from using Alg. 1 could be largely attributed to this386
rewiring-induced opinion mixing.387

To examine whether this may indeed be the case, we ran simulations with a modified version of Alg. 1388
where we replaced the preferential attachment component ds{

ř

i di by a real number ρ P t0.01, 0.1u. Note389
that while this modification aims at altering the network topology, the resulting alternative networks are390
still regenerated at each time step, similar to scale-free networks, i.e. the notion of rewiring is preserved.391
The results are shown in Fig. 5. The similarity to the scale-free networks scenario is particularly striking for392
ρ “ 0.01. When Nrest is low, it becomes difficult to separate a scale-free network (where the degrees are393
power law distributed) from a small-world network (where the degree distribution is much less skewed, i.e.394
more symmetric around the mean value). Therefore, for low Nrest the impact of the preferential attachment395
component in Alg. 1 can be well approximated by a constant such as ρ “ 0.01. More importantly, it shows396
that the strong effect that dynamic rewiring has on swarm adaptivity and collective response.397

A feature that frequently occurs in realistic communication is the packet loss. It occurs when a robot fails398
to receive a message broadcast by a neighbor, due to radio-frequency interference or due to overflow of399
a robot’s receiver queue. We implemented packet loss events by allowing the robots to ignore incoming400
messages with probability ppl. Fig. 6 shows the results for the proximity and scale-free networks with401
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Figure 4. Degree distributions of the networks within the nest at different time instances. (A) Scale-free
networks; (B) Proximity networks. At t “ 5000 ts and t “ 11250 ts there are Nitems “ 30 to retrieve,
while at t “ 8750 ts and t “ 13750 ts the item count is Nitems “ 300. Additionally, box plots for the
(C) scale-free and (D) proximity networks illustrate the presence of outliers for the different onsets of
stimuli S1...7 (starting at tcrit “ 7500 ts and occuring in intervals of ∆tcrit “ 2500 ts). As expected, in
contrast to the proximity networks, in case of scale-free networks, the outliers (indicated by the ` markers)
are so extreme that the boxes containing the mean values are barely recognizable at the bottom of plot (C).

ppl P t0.1, 0.5u. Surprisingly, the swarm adaptivity considerably improves in case of proximity networks,402
while with scale-free networks the swarm remains more robust to the influence of the packet loss. Higher403
probabilities of packet loss appears to shorten the time to convergence and slightly increase the number404
of collected items. One possible explanation for this behavior could be that by probabilistically ignoring405
incoming messages the robots become to some extent able to reduce the correlation between their behavior406
and that of their spatial neighbors. Synthetically generated networks, such as the scale-free networks407
considered in this study, represent an extreme case of such spatial decorrelation. In contrast, in proximity408
networks and absence of packet loss, spatial correlations are very high, leading to feedback mechanisms409
that reduce sensitivity to new information. The presence of packet loss appears to create a middle ground410
that bolsters the adaptive behavior at the swarm level. However, we only tested two values of ppl and it is411
possible that for ppl ą 0.5 inverse effects could be observed. Finally, when resting state can be associated412
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Figure 5. Comparison of the (A) swarm collective response, (B) time to convergence and (C) swarm
performance, between scale-free networks and random networks created with ρ “ 0.01 and ρ “ 0.1.

with low energy consumption, the behavior of the system in the presence of here considered ppl may413
demonstrate a high level of efficiency, in terms of increasing Nrest while preserving the high number of414
retrieved items. Nevertheless, as mentioned above, the detailed investigation of the influence of packet415
loss is beyond the scope of the current study and future research is needed to confirm the generality of416
our findings5. Moreover, here we consider constant values of ppl that are the same for every robot in the417
swarm and that do not change based on the location of the robot or the number of communication links. In418
contrast, in more realistic settings not only the packet loss but also ppl itself may have fluctuating values419
depending on the situation and both could be profoundly difficult to control.420

Finally, we compare the intensity of the collective response resulting from different social cues. As421
mentioned above, social cues are the main driver of the dynamics to build up a faster response over the422
interaction network. Our results show that higher social cues lead to a higher activation of the resting423
robots, see Fig. 7 that shows the activation of the resting robots when setting sf “ 0.99, sr “ 0.99 in424
comparison to the setting sf “ 0.01, sr “ 0.01 (results are averaged over 30 runs). High social cues425
activate considerably more resting robots (i.e. reduces number of resting robots) than low cue values426
(Fig. 7A). However, the convergence time with high cue values is comparable to the previously considered427
default case of sf “ sr “ 0.25 (see Fig. 7B). The number of collected items overlaps for all three cue428
values (see Fig. 7C).429

4 CONCLUSION

The goal of this study is to investigate the role of network topology in influencing the propagation of430
information in a foraging scenario with changing the availability of food items. Therefore, we have431
addressed scenarios with dynamic environments, a realistic aspect of most real-world applications. We432
considered two types of changes: a single abrupt change (referred to a single stimulus) and periodic433
changes (multiple stimuli). We aimed to examine how scale-free networks, in particular, may accelerate the434
spreading of information and hence enable a quicker collective response than proximity networks to the435
global changes.436

We have implemented scale-free networks across the robots resting in the nest, as the nest is usually437
the part of the environment in which communication takes place. We applied the well-known preferential438

5 To this end, the interested reader is encouraged to use our publicly available resources provided on https://osf.io/48b9h/.
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Figure 6. Swarm performance comparison between the scale-free networks (blue) and the proximity
networks in presence of packet loss, with packet loss probability ppl “ 0.1 (red) and ppl “ 0.5 (magenta) .
The number of items is repeatedly increased to Nitems “ 300 (indicated by Ÿ) or reduced to Nitems “ 30
(indicated by Ź). These repeating changes occur in intervals of ∆tcrit “ 2500 ts, starting at tcrit “ 7500 ts.
Left column: Scenario with initially Nitems “ 30. Right column: Scenario with initially Nitems “ 300;
(A)-(B) Swarm collective response in terms of Nrest. (C)-(D) Swarm convergence time. S1...7 correspond
to the seven stimuli between tcrit “ 7500 ts and t “ 25000 ts. (E)-(F) Cumulative sum of the retrieved
items. In (A),(B),(E) and (F), the shaded areas indicate the confidence interval of 95%. All results represent
averages over 30 runs.

attachment technique to construct the scale-free topology. Following preferential attachment, the probability439
of connecting to a robot is proportional to its current connectivity degree. Therefore, a number of robots440
emerge to have a relatively high degree of connectivity, those are referred to as the hub robots. When441
the density of food items changes at the foraging environment, and this change is reflected in the robots’442
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Figure 7. Comparison of the (A) swarm collective response, (B) time to convergence and (C) swarm
performance, between different values of social cues for swarms communicating through scale-free
networks. Apart from sf “ sr “ 0.25 we consider two extreme cases: low values (sf “ sr “ 0.01) and
high values of social cues (sf “ sr “ 0.99). All results were averaged over 30 runs.

experience, scale-free networks enable a faster spreading of this information in the nest. This led to a443
faster collective response compared to the scenarios in which interactions between the resting robots were444
implemented using proximity networks.445

Our results suggest that the use of scale-free networks can improve the collective response of the swarm446
to changes in their dynamic environment, by improving the spread of shared information and reducing the447
spatial correlation in the robots’ decisions. These two desired features in collective systems are achieved448
due to the introduced possibility to communicate over long distances, as well as due to the dynamic449
rewiring of the interaction network at every time step as a consequence of robot motion. These insights450
were obtained by comparing the swarm behavior in scenarios with and without systematic packet loss,451
in addition to comparing the swarm performance between scenarios with scale-free networks and with452
alternative random networks. Furthermore, our findings showcase the effect of social cues on the intensity453
of the collective response in presence of scale-free networks. Our results show that higher social cues lead454
to a higher activation of the resting robots, due to the increased influence of their neighbors’ experience.455

Although scale-free networks have shown to equip the swarm with a quicker reaction to changes in456
dynamic environments—studied for the collective foraging task—this came at the cost of the coherence of457
the collective response. Scale-free topologies led to more fluctuations of the swarm decision (whether to458
rest or to forage). These fluctuations can be explained in terms of the high influence of particular individuals459
(i.e. the hubs) on the opinions of a large population of the resting robots. Two particularly promising460
research directions for future work include the design of self-organized algorithms to implement scale-free461
topologies in robots swarms. Additionally, the design of efficient individual decision mechanisms that462
helps the collective response to demonstrate a higher stability. Finally, generalizing this study to other463
collective tasks such as site selection, flocking, and others may also lead to new interesting insights.464
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