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a  b  s  t  r  a  c  t

Exploration  of  an  unknown  environment  is one  of  the most  prominent  tasks  for  multi-robot  systems.
In  this  paper,  we  focus  on  the  specific  problem  of how  a swarm  of simulated  robots  can  collectively
sample  a  particular  environment  feature.  We  propose  an  energy-efficient  approach  for  collective  sam-
pling, in  which  we  aim  to optimize  the statistical  quality  of  the collective  sample  while  each  robot  is
restricted  in  the  number  of  samples  it can  take. The  individual  decision  to sample  or  discard  a detected
eywords:
warm robotics
patial sampling
ollective behavior
ollective decision-making
nvironment sampling

item  is performed  using  a voting  process,  in which  robots  vote  to converge  to  the  collective  sample  that
reflects  best  the  inter-sample  distances.  These  distances  are  exchanged  in the local  neighbourhood  of  the
robot.  We  validate  our  approach  using  physics-based  simulations  in  a  2D  environment.  Our  results  show
that  the  proposed  approach  succeeds  in  maximizing  the  spatial  coverage  of  the collective  sample,  while
minimizing  the  number  of taken  samples.

© 2019  Elsevier  B.V.  All  rights  reserved.
. Introduction

Robot swarms are gaining importance as the scope of their
pplications is getting wider [1–5]. Different from other types of
ulti-robot systems, in swarm robotics no central coordination or

nowledge is assumed. Instead, robots only execute a set of sim-
le behavioral rules and communicate with their local neighbors
6]. Impressive collective behaviors can emerge from these sim-
le rules, while the solution stays fault-tolerant and scalable [7–9].
ue to the large number of robots in a swarm, the system can keep

unctioning even when a few individuals get damaged. Scalability
lso results from the fact that robots only exploit information from
heir local neighbourhood.

One of the key tasks, in which swarm robotics offers a poten-
ially cost-efficient and robust solution is analyzing and mapping of
arge environments [10], in which they can cover large areas within
imited time periods. Environment analysis is a fundamental task
or different applications. For instance, in the agriculture domain,
nvironment analysis may  be used to map  soil quality. [11], A robot

warm robot can be used to build a spatial sample of the distribu-
ion of some plant features (e.g., leave color) across a large field,
hich then can be used as an indicator for particular crops.

∗ Corresponding author.
E-mail addresses: yara.khaluf@ugent.be (Y. Khaluf), pieter.simoens@ugent.be

P. Simoens).

ttps://doi.org/10.1016/j.jocs.2019.01.005
877-7503/© 2019 Elsevier B.V. All rights reserved.
In this paper, we tackle the problem of gathering information
about the spatial distribution of a specific environmental feature
using a simulated swarm of robots.1 Robots, in this study, oper-
ate as mobile sensors, which perform a random walk and decide
autonomously on whether to discard or to sample and upload the
locations of detected items to a central system for statistical anal-
ysis. The information gathered by the swarm is referred to as the
collective sample. Note that the central system is used only for the
statistical analysis of the collective sample, but has no impact on the
individual robot’s decision-making process nor on the constitution
of the collective sample that is generated by the swarm.

Real robots are associated with limited on-board batteries and
hence the number of energy-expensive operations such as a (wire-
less) upload need to be limited. We,  therefore, address the problem
of collective sampling under the constraint of a limited sampling
budget (LSB). Our optimization goal focuses on the cost associated
with uploading information about the sampled data items rather
than the cost associated of the robot’s travel. In particular, we  aim
to design a behavioral decision model for the individual robot that
results in a collective sample of maximal statistical quality with a

minimum number of samples. Neither the actual locations nor the
spatial distribution from which these locations were sampled are
known by the robots. This makes the generation of a high-quality

1 For simplicity, we  will refer to the simulated robot as robot throughout the
paper.
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ample that covers all regions a challenging task. In this paper, we
tudy the most stringent LSB: we allow each robot to upload only
ne item.

Similar to any statistical sampling, collective sampling needs to
aximize the coverage of the problem space (i.e. a 2D physical envi-

onment), so that the statistical distance between the actual item
istribution and the distribution estimated from the collective sam-
le is minimized. Increasing the number of uploads improves the
tatistical quality of the sample but needs to be traded off with the
SB constraint. Our approach relies on covering the largest set of
nter-sample distances by adopting a local voting mechanism that
llows to collectively decide which robots will upload the location
f a detected item. Inter-sample distances represent a key param-
ter in several sampling applications, e.g., the analysis of the T-Cell
eceptor Repertoires [12], or gene expressions [13].

The rest of the paper is organized as follows. In Section 2 we
escribe the problem of collective sampling using a homogeneous
warm of robots under the constraint of limited sampling budget
LSB) and the performance measure we use to evaluate our results.
he behavior of the individual robot is presented in Section 3, in
hich we propose a novel approach for efficient exploration and

nformation exploitation in sampling unknown environments. Our
xperimental configurations are described in Section 4, and the
esults are discussed in Section 5. We  conclude our paper in Section
.

. Problem description

We  consider a system of N homogeneous robots that explore a
arge and unknown 2D environment to sample a particular feature,
enoted by �.  The feature � is discrete, thus, consists of a finite
umber of items M,  which are scattered across the environment

ollowing a particular spatial distribution P(x). We  define � as a
tatic feature, i.e. it does not change over time in any of its prop-
rties such as its spatial distribution, quality level, or others. When

 robot encounters a sample of �,  it might decide to upload the
patial coordinates of its current location x. The upload decision is
overned by one of the behaviours defined in the next section. The
ollective sample uploaded by the robot swarm is denoted by Scoll .

coll = {xK} K = ‖Scoll‖; K ≤ min(M, N) (1)

here xK is the coordinate vector of the Kth uploaded item of the
eature � and we impose that each robot cannot upload more than
ne item. Please note that allowing the robot to sample more than
ne item can only improve the statistical quality of the collective
ample. Hence, we have selected the most challenging setting by
imiting the number of samples to one per robot and benefit from
his condition on obtaining an energy-efficient approach in terms
f the uploading process.

The collective sample Scoll is used to estimate the parameters of
he spatial distribution of the feature �.  In particular, Scoll is used
o estimate the mean �g and (diagonal) co-variance �g of a multi-

odal bivariate Gaussian distribution with G modes:

(
x|

{
�g, ˙g

})
= 1
G

G∑
g=1

N
(

�g, ˙g
)

(2)

In this paper, we will restrict the analysis to G = 1 and G = 2 and
iagonal co-variance �g. The main goal of our study is to produce

 collective sample Scoll that allows the most accurate estimation
f the feature distribution, while minimizing the total number of
ploads. We  define the following measures to evaluate the effi-

iency of the collective sampling process at the swarm level:

The statistical quality of the collective sample Scoll: the
uploaded samples are a subset of the M items (M ∼ P(x)), which
ational Science 31 (2019) 95–110

are distributed over the environment. In order to evaluate the
statistical correctness of the distribution Q(x) estimated from
the collective sample Scoll , we  use the Kullback-Leibler (KL-)
divergence [14]. KL-divergence is a well-known measure in infor-
mation theory [15,16] that is given by:

DKL(P‖Q ) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx (3)

where P is the actual spatial distribution of the data items and Q
is the distribution that is estimated based on the sample uploaded
by the robots. The distance is a non-negative measure that is zero
when the two  distributions are identical.

• The upload percentage: is a global measure that emerges from
the autonomous decisions of the individuals whether to upload
or to discard items, and it is computed as follows:

ıScoll
= K

M
(4)

where K is the number of uploads, and M is the total number
of items of feature � scattered over the environment (K ≤ min(M,
N)). The M items in the environment are a sample of the original
distribution P. Therefore, the best estimate Q that the swarm can
possibly obtain, is by sampling all of the M items. The upload per-
centage is used to indicate the percentage of knowledge obtained
about the feature by reporting the number of uploaded items
over the total number of items. This metric can be used as an
indicator of the efficiency of the swarm performance in terms of
energy. Since in practical applications, such uploading operations
are generally expensive in terms of energy, limiting the number
of uploads is a desired energy goal.

3. The individual uploading behavior

In our proposed approach, to make an upload/discard decision,
each robot exploits the limited information sensed while explor-
ing the environment, in addition to the information shared by its
local neighborhood. The local neighborhood includes all robots that
are within the communication range and are in line-of-sight. The
upload decision is made probabilistically, since no individual has a
complete knowledge of the environment nor of its current condi-
tions. In our study, robots have no knowledge on the parameters
of the spatial distribution and on the size of the environment. Yet,
the collective sample Scoll needs to (i) provide the widest possible
spatial coverage of sample points, and (ii) reflect the distribution
of inter-sample distances. In the following, we  propose a Collective
Sampling Controller (CSC) that aims to achieve these requirements
under a Limited Sampling Budget (LSB) of one item per robot. We
also present two  simpler variants of this controller that we  will use
as benchmarks in our experiments

Collective Sampling Controller (CSC): The CSC operates in three
phases:

1. The exploration phase: in which robots explore the environment
for a period of ıe using a diffusion behavior that allows the
swarm to maximize its coverage. To help first reaching a max-
imum coverage, robots are not allowed to stop on data items
in case they detect any during this phase. The diffusion behav-
ior is inspired by diffusion models of gas particles, in which the
particles move from spaces with high concentration to spaces
with low concentration and hence tend to fill the whole space
[17]. In our algorithm, obstacles are understood as gas particles
and the robot tends to move away towards spaces with lower

concentrations. This tendency results in two outputs: obstacle
avoidance and maximum coverage. We  implement the diffusion
behavior as follows. In each simulation step, the robot accumu-
lates the vectors extracted from the readings of its proximity
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Fig. 1. The voting mechanism in the CSC controller. Each robot samples uniformly from the range of distances computed with neighbours, who  have detected an item. The
robot  votes for the neighbours whose distances are the closest match to the sampled distances.

, (a) un

•

t

Fig. 2. Unimodal Gaussian distribution of 200 data items

sensors.2 Each reading has a value and an angle to indicate both
the relative distance and the relative angle to the obstacle per-
ceived through that sensor. The accumulated vector is used as
an indicator towards the most free direction—i.e. the space with
lowest concentration. Different from localized motion models
such as Brownian motion [18], we preserve the same direction
and move in a straight line when no obstacles (or other robots)
are sensed. This allows the robots to diffuse and increase the
swarm exploration coverage.

Pseudo-code of the behavior in this phase is shown in Alg. 1.
Algorithm 1
The algorithm followed by the individual robots in our physics-

based simulations to explore (diffuse in) their environment.
The detection phase: robots use this phase to select the data items,
for which they will make the decision to upload or discard. After

2 The robot used in our study has 24 proximity sensors. Details are provided in
he  next section.
clustered configuration, and (b) clustered configuration.

the exploration phase, robots are assumed to have achieved the
maximum possible coverage, and therefore are ready to start
marking the nearest items for potential upload. This phase lasts
for a period of ıd and in this phase robots continue apply-
ing the diffusion behavior that enables obstacle avoidance and
spreading-out but they are now allowed to stop on data items.

• The exploitation phase: robots which have detected data items in
the previous phase, will take in this phase an individual decision
to upload or discard the location x of its detected item. This deci-
sion is taken after a local voting procedure—i.e. across the robot’s
neighborhood.

The voting procedure is illustrated in Fig. 1. First, each robot
i that has detected a data item computes its distance dij to
all its local neighbors j—i.e. robots within its communication
range—that have detected data items as well. We  will explain
in Section 4 how such relative distances are computed in our
physics-based simulations.

As mentioned above, one of the design goals of the voting pro-
cess is to maximize the coverage over the inter-sample distances.
This is achieved by allowing each robot to uniformly sample
D≤ ‖ Ni ‖ (‖Ni‖ is the number of robots in the local neighborhood
of robot i) values dx within the range [min(dij), max(dij)], where dij
denotes the set of all distances between robot i and its neighbours
j.

Each robot will now vote for the D neighbors of which the
actual distance dij is most close to one of the values dx that were
uniformly sampled. In particular, each sampled distance dx is
mapped to the neighbor j from the neighborhood Ni of robot i
as follows:

Map(dx) = j, where |dx − dij| < |dx − dir | ∀r ∈ Ni, r /=  j, (5)

By uniformly sampling from the interval of actual distances, all
inter-item distances have the same probability to be included in

the robot’s sample (and hence to be a potential uploaded). Since
every robot can upload one data item at most, these sampling
and voting mechanisms allow the uploaded data item locations
to have a higher chance to represents all inter-sample distances.
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ig. 3. Sample scenarios for the different settings used in our experiments with
on-symmetric; (c) near-means, symmetric; (d) far-means, symmetric.

The robot sends its votes to its selected neighbors. Upon
receiving a vote, the receiver increases its tendency to upload
the location of the data item it detected (and stopped on), see
Fig. 1.

When the number of votes received by a robot is higher than
a predefined threshold  ,  the robot decides to upload, other-
wise it does not. This mechanism is inspired by the Response
Threshold Model (RTM), a well-known approach in robot swarms
[19]. In this model, a robot will decide to switch from its cur-
rent option A to option B if a stimulus value crosses a particular
threshold (and vice versa). In our specific case, option A is to
not upload the detected item, option B is to upload it, and the
stimulus is the number of votes received by the robot. When
the number of votes exceeds the threshold, the robot uploads.
One of the main challenges in applying RTM is to properly set
the threshold. In many studies this threshold is defined to be
static. The threshold value results from a series of simulations
and fine-tuning processes. Whereas in some other studies the
threshold is dynamic and is adapted to the dynamics of the
task environment. In our study, we use a static threshold  ,
the value of which we have calibrated using a set of initial
simulations. The pseudo code of the CSC is given in Algorithm
2:
lgorithm 2. The algorithm followed by the individual robots in
ur physics-based simulations to generate the collective sample.
dal Gaussian distributions of �.  (a) near-means, non-symmetric; (b) far-means,
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Fig. 4. The fitting of the distribution generated from the collective sample associated with the output of one sampling process for (a) CSC, (b) AUC, and (C) BNC.
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of the time is assigned to the exploitation phase (details are given
in the following sections for each of the two  arenas). Our reported
results for all experiment configurations are averaged over 30 runs.
Fig. 5. Collective sampling performance metrics for the unclustered unim

Finally, in case of generalizing our algorithm to allow the robot
o sample more than one data item (as mentioned above, this can
nly improve the statistical quality of the collective sample), the
lgorithm will iterate over the second and third phases, since the
xploration phase is needed only once. Furthermore, our algorithm
an be extended easily to 3D environments, because the robot’s
pload/discard decisions are taken based on local interactions.
urely, when dealing with 3D environments, the robot’s random
alk behavior needs to be adapted; in particular, the sampling pro-

ess of the random angle which the robot uses when performing
bstacle avoidance.

.1. Benchmark

In order to assess the importance of the exploration and
xploitation phases, we also define two simpler controllers that
e will use as benchmark to evaluate the performance of the CSC

ontroller.
Always-Uploading Controller (AUC):  no exploration phase is

sed. Robots perform a random walk using the diffusion process
xplained above and upload the first item detected. No information
s exchanged with the robot’s neighborhood.

The AUC may  be useful for tasks in which a minimum amount
f data items needs to be uploaded within a specific deadline. The
ownside of this controller is that most of the robots will upload
t the region with a high number of data items that is nearest to
heir starting location. Under the constraints of LSB and swarm
ize N, the statistical quality of the collective sample Scoll is likely
o drop, since the robots will concentrate their uploads at spe-
ific spots, rather than enlarging the coverage of their collective
ample.

Blocked-by-Neighbor Controller (BNC):  this controller
xploits the neighborhood’s information to maximize the spatial
overage of the collective sample. A robot that detects an item
ill send a blocking signal to its local neighborhood. A robot will

nly upload an item if it is not in the local neighborhood of an
ploading robot, otherwise, it will continue exploring the environ-
ent further. By blocking uploads in the local neighborhood, we

einforce exploration. BNC maximizes the spatial coverage of the
ollective sample Scoll under two limitations (i) the swarm size N
nd (ii) the duration of the experiment. When the average distance
etween data items is smaller than the robot’s communication

ange, BNC fails to maximize the spatial coverage of the collective
ample Scoll, due to the high number of blocking events by the
eighbors. This affects negatively the statistical quality of the
ollective sample.
istribution: (a) KL-divergence, and (b) the percentage of uploaded items.

4. Experimental setup

We  run simulations with N = 100 robots distributed over a rect-
angular 2D arena. The number of robots N = 100 was selected so that
the average time robots spend in obstacle avoidance is smaller than
the average time spent in other tasks (e.g., exploring, detecting,
etc.). While keeping N fixed, we  vary the number of items M over
the range [20–200]. This allows us to study the collective dynamics
for different ratios of N to the number of data items. We  simulate
a swarm of Footbots3 using ARGoS—a state-of-the-art simulator
for large-scale swarms that provides a high level of accuracy in
simulating the robots’ physics and dynamics. The Footbot has 24
proximity sensors to sense obstacles, and we  use its range-and-
bearing system (sensor and actuator) to (i) exchange messages
relying on line-of-sight communications and (ii) to extract the
relative distance to the message source (in centimeters)—this is
how the robots compute the relative distance to their neighbors
as shown in Fig. 1. Differently, the locations of the data items
are assumed to be available for the simulated robots. ARGoS does
not offer any simulated localization system, besides the simulated
Footbot is not equipped with any localization feature. However, in
practice we  assume that an absolute frame reference can be used
or other mechanisms can be applied such as light emitting, where
a top camera system can be used to extract the different locations
of light.

We test the performance of our proposed controllers using a
unimodal as well as a bimodal Gaussian distribution to sample the
location of the M data items at the beginning of the experiment.
The macroscopic performance of the swarm is measured using the
KL-divergence Eq. (3) and the upload percentage Eq. (4). Since the
exploitation phase involves only communication between agents,
whereas the exploration and the detection phases involve agent
motion, and because of the significant difference between commu-
nication speed and motion speed, the length of the first two  phases
is significantly larger than the length of the exploitation phase. The
exact split of the phases length is computed based on the duration
it may  take the robot to travel along the arena diagonally. This time
is used to define the duration of the two  phases, whereas the rest
3 A wheeled robot used in the Swarmanoid project. It is equipped with 24 prox-
imity sensors distributed around its perimeter, camera, and range-and-bearing
communication system. It moves in the simulation at a speed of 5 cm/s.
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Fig. 6. The fitting of the distribution generated from the collective sample associated with the output of one sampling process for (a) CSC, (b) AUC, and (C) BNC.
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Fig. 7. Collective sampling performance metrics for the clustered unimodal di

Table 1
Table of parameters for the experiments executed with unimodal Gaussian.

Parameter Value

Arena dimensions 10 × 8 m2

Experiment time 3000 time steps (300 s)
Total number of items M 20–200 (steps of 10)
Swarm size N 100 robots
Linear speed of robot 5 cm/s
Unclustered Gaussian � = (0, 0) and � = 2
Clustered Gaussian � = (0, 0) and � = 0.4
Duration of exploration phase ıe 0.4 of the experiment time
Duration of detection phase ıd 0.4 of the experiment time
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Duration of exploitation phase ıp 0.2 of the experiment time
Size of voted neighbors D 0.5 of the local neighborhood
Uploading threshold � 0.1 of the neighborhood size

he feature � is represented as a group of colored circles scattered
cross the arena that can be detected using the color sensors at the
ottom of the Footbot. The diameter of the circle is set to 10 cm.  The
iameter of the Footbot is 17 cm,  so only one robot at a time can
e over a particular circle. We  also set the communication range of
he robot to 1 m.

We fit Scoll to a multi-modal bivariate Gaussian with equal
eights (as in the right-hand side of Eq. (2)). However, we do not

ssume the algorithm to know the number of Gaussians before-
and. Instead, we first apply k-means clustering [20] on Scoll. As
e will see in the experiments, in some scenarios our fitting algo-

ithm estimates a single modal distribution rather than a bi-modal.
he parameters of the multi-modal bivariate Gaussian (�g and �g)
re estimated from the samples Scoll. The KL-divergence computes
he distance between the actual distribution that was used to dis-
ribute the items before the start of the experiment, and a fit of the
ollective sample.

Unimodal Gaussian: We  use a 10 × 8 m2 rectangular arena as
hown in Fig. 2. We  set the length of each experiment with a uni-
odal Gaussian to 3000 time units (300 simulated seconds). The

peed of each simulated robot is 5 cm/s. Since the diagonal of the
rena is appx. 1250 cm.  It will take the robot appx. 250 simulated
econd to travel that distance. Hence, we set the duration of the
xploration and detection phases to 0.8 of the total experiment
ime (0.8 × 300 = 240 simulated second), and we split this dura-
ion equally between the two phases. Whereas the exploitation

hase is assigned the rest of the experiment time—i.e. 0.2 of the
xperiment time. Table. 1 summarizes the parameters used for the
nimodal Gaussian. In all experiments with a unimodal Gaussian,
he mean �g is set to (0,0), the center of the arena. The value of the
stribution: (a) KL-divergence, and (b) the percentage of uploaded items.

co-variance �g (diagonal matrix) will then determine the spread of
the M items. In our experiments, we  will test two  configurations: an
unclustered and clustered configuration. For the unclustered con-
figuration, shown in Fig. 2, we set all elements of the 2 × 2 diagonal
matrix �g to 2 m.  Consequently, according to the 3-� rule [21], the
value of 2 m used for the standard deviation allows the data items
to cover a squared area of 6 × 6 m2 with a probability of 0.997.

Differently, for the clustered configuration of the unimodal
Gaussian, we set all diagonal elements of �g to � = 0.4 m.  Hence, the
data items cover a squared area of 1.2 × 1.2 m2 with a probability
of 0.997.

Bimodal Gaussian: we  use a 16 × 16 m2 square arena as shown
in Fig. 3. The arena for the experiments with the bimodal Gaus-
sian is larger than in the case of the unimodal Gaussian because
we aim to preserve the inter-sample distances between the data
items while keeping the same value for the standard deviation of
a single Gaussian mode. The inter-sample distances is a critical
parameter that influences directly the intensity of the collisions
between the robots while detecting the data items. Therefore, we
increased the arena size in the bimodal experiment setting. Similar
to the computations done for the unimodal Gaussian, the diagonal
of the arena in the case of the bimodal Gaussian is appx. 2200 cm.
Thus, it will take the robot appx. 440 simulated second to travel
that distance (robot’s speed is 5 cm/s). Hence, we  set the duration
of the exploration and detection phases to 0.8 of the total exper-
iment time (0.8 × 550 = 440 simulated second), and we split this
duration equally between the two phases. Whereas the exploita-
tion phase is assigned the rest of the experiment time—i.e. 0.2 of
the experiment time. In all experiments with bimodal Gaussian dis-
tributions, we  use a value of � = 2 for all elements of the diagonal
co-variance matrix �g. The means of both modals are placed on a
diagonal of the arena. We vary the distance between the means of
both modals and discern between a close-means and far-means sce-
nario. In the latter scenario, the M items will be clustered around
the two means. For both scenarios, we introduce two configura-
tions: (i) non-symmetric: the means of the Gaussians are placed
on the diagonal of the arena from the bottom left to the top right
corner; (ii) symmetric: the means of the Gaussians are placed on
the diagonal from the bottom right to the top left corner. Hence,
the spatial distribution of the M items looks symmetric from the
deployment location of the robots—i.e. the bottom left corner of

the arena. Example settings of all four configurations are shown
in Fig. 3. The parameters used in the experiments of the bimodal
distribution are given in Table. 2 .



Y. Khaluf, P. Simoens / Journal of Computational Science 31 (2019) 95–110 103

Fig. 8. The fitting for bi-modal Gaussian, near means and non-symmetric item distributions, generated by (a) CSC, (b) AUC, and (C) BNC.



104 Y. Khaluf, P. Simoens / Journal of Computational Science 31 (2019) 95–110

Fig. 9. KL-divergence of the bimodal distribution (near-means, non-symmetric) estimated from the collective sample (a) the Gaussian furthest from the robots’ starting
location, (b) the Gaussian nearest to the robots’ starting location, (c) the average of KL-divergence over both Gaussians.

Table 2
Table of parameters for the experiments executed with bimodal Gaussian.

Parameter Value

Arena dimensions 16 × 16 m2

Experiment time 5500 time steps (550 s)
Total number of items M 20–200 (steps of 10)
Swarm size N 100 robots
Linear speed of robot 5 cm/s
Near-means non-symmetric �1 = (−3, − 3), �2(3, 3) and �1 = 2, �2 = 2
Far-means non-symmetric �1 = (−5, − 5), �2(5, 5) and �1 = 2, �2 = 2
Near-means symmetric �1 = (−3, 3), �2(3, − 3) and �1 = 2, �2 = 2
Far-means symmetric �1 = (−5, 5), �2(5, − 5) and �1 = 2, �2 = 2
Duration of exploration phase ıe 0.4 of the experiment time
Duration of detection phase ıd 0.4 of the experiment time
Duration of exploitation phase ıp 0.2 of the experiment time
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the exploration and detection phases, in which the robots detect
Size of voted neighbors D 0.5% of the local neighborhood
Uploading threshold � 0.1 of the neighborhood size

. Results and discussions

.1. Unimodal distribution

.1.1. Unclustered configuration
Fig. 4 demonstrates the fit of the distribution extracted from the

ollective sample Scoll that was collected by the three types of con-
rollers and for different item densities (from left to right: M = {20,
0, 100, 150, 200}). For each controller, the upper graphs show the

ocations of the robots who decided to upload their detected items.
he bottom graph shows a histogram of the locations along the X-
xis and the fitted distribution. While Fig. 4 gives a more qualitative
nsight, in Fig. 5, we plot the two performance measures that were
escribed in Section 2.

When M > 50, the CSC controller provides the lowest KL diver-
ence. The BNC controller provides slightly worse KL-divergence.
otably, the KL divergence of the AUC controller degrades rapidly
ith increasing values of M.  This observation can be explained in

ight of the larger number of items available for the robots to sam-
le nearby their starting location. With the AUC controller, robots
ill stop and sample the first item detected by each robot. There-

ore, the collective sample becomes biased with a shifted mean (to
egative coordinates). This is clearly visible in Fig. 4b.

The KL-divergence of the fitting in case of the collective sample
enerated by the BNC controller is significantly better than the KL-
ivergence of the fittings from the AUC controller, and similar to
he fittings of the CSC controller. This performance of BNC can be
xplained by the large spatial coverage of the collective sample that
his controller generates, particularly for an unclustered distribu-
ion of the items. Two features of BNC may  be responsible for the

lightly decrements in performance for higher values of M in com-
arison to CSC: (i) when inter-item distances are smaller than the
obot communication range, those are never sampled by the BNC
Fig. 10. Percentage of uploaded items for the near-means, non-symmetric config-
uration.

controller, and such distances are more frequent with higher values
of M.  (ii) The more items there are, the more neighbors will sample,
and thus the more blocking actions are taken. Consequently, robots
will spend a long time searching for items that they can sample and
upload without being blocked by a neighbor. This may  result in the
experiment finishing before a large-enough sample is generated.

The upload percentage, as shown in Fig. 5b is slightly higher
for the CSC controller than for the BNC controller. The AUC con-
troller results in the highest upload percentage. Remarkably, the
AUC upload percentage decreases with higher values of M.  This is
due to spatial interferences (i.e. obstacle avoidance) between robots
that are trying to upload items nearby their starting location, and
robots that are trying to move out.

5.1.2. Clustered configuration
The results of this configuration are shown in Figs. 6 and 7. For

this configuration, the AUC and BNC both generate a biased dis-
tribution with a shifted mean, specifically for high item densities,
see Fig. 6b,c. For AUC, similar to the unclustered configuration: the
part of the cluster that is nearer to the robots’ starting location will
be over-sampled and the mean is shifted to negative values. In the
case of BNC, the shifted mean results from the robots approaching
first the cluster area near to their starting location. Since the robot’s
communication range covers a large part of the cluster, these robots
will then block other robots who  try to sample from other locations
of the cluster. Therefore, the area of the cluster that is covered first
is the one with the highest probability to be sampled. CSC per-
forms best in the case of clustered item distribution, thanks (i) to
the cluster of data items, and (ii) to the exploitation phase that bal-
ances both the locations and the number of samples collected, see
Fig. 6a.
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Fig. 11. The fitting of the sample collected from a bi-modal Gaussians (near means, symmetric) by (a) CSC, (b) AUC, and (C) BNC.
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Fig. 12. KL-divergence of the bimodal distribution (near-means, symmetric) estimated from the collective sample (a) the Gaussian on the right side of the robots’ starting
location, (b) the Gaussian on the left of the robots’ starting location, (c) the average of KL-divergence over both Gaussians.
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Fig. 13. Percentage of uploaded items f

As shown in Fig. 7a, the estimated distributions of the sam-
les generated by the CSC result in the lowest KL-divergence. AUC
enerates again the worst samples: the KL-divergence decreases
lmost linearly with the item density. In terms of upload per-
entage, shown in Fig. 7b, BNC is the most economic controller.
owever, we can notice that the upload percentage of BNC drops
ith increasing item density due to the blocking effects. As a

esult, the size of the collective sample will decrease and the KL-
ivergence will increase accordingly. Another remarkable result is
he stabilization of the upload percentage of CSC around 0.3 for
igher values of M.  This is a clear indicator of the efficiency of CSC by
onverging to an adequate sample size even when a large amount
f items is available to sample from. Finally, the AUC has the highest
pload percentage, but this decreases with M due to spatial inter-
erences between the robots in the small area where the items are
lustered.

.2. Bimodal distribution

.2.1. Near means, non-symmetric
Fig. 8 illustrates the fitting of the distribution generated for the

i-modal Gaussian based on the estimated means and standard
eviations extracted from the collective sample using each of the
hree controllers. In Fig. 8b, it is obvious that the collective sample
enerated by the AUC covers mainly the Gaussian near to the robots’
tarting location (� = (−3, − 3), � = 2) rather than the far Gaussian
� = (3, 3), � = 2). Hence, the fitting generated for the near Gaus-
ian is significantly better than the far one, and this increases with
ncreasing the item density.
A similar problem, although less significant, is observed for the
NC controller, as shown in Fig. 8c. The CSC provides the best cov-
rage of both Gaussians, as shown in Fig. 8a. Nevertheless, the
lgorithm (i.e. k-means clustering) that is used to derive the dis-
 near-means, symmetric configuration.

tribution from the collective sample was  not efficient enough in
distinguishing between the two Gaussians. Instead, it was  mostly
interpreted as one Gaussian.

Due to all reasons explained above, none of the three controllers
has reached a high accuracy in the estimation of the item distri-
bution (Fig. 9c), even when CSC has reached a considerably wider
coverage and both BNC and CSC have uploaded significantly fewer
items than AUC Fig. 10.

However, CSC shows a better KL-divergence than BNC for the
Gaussian furthest from the starting location. Both controllers are
better than AUC, see Fig. 9a, for which the KL-divergence even
degrades with increasing item density.

For the Gaussian nearest to the robots’ starting location, CSC
preserves its KL-divergence. AUC is the best controller here, since
all robots sample for the Gaussian near to their starting location,
see Fig. 9b.

5.2.2. Near means, symmetric
For the symmetric configuration with near means, no bias is

found in the sampling process performed by all three controllers,
see in Fig. 11. All controllers generate a wide-enough sample of
both Gaussians, thanks to the equal distance of the means from the
robots’ starting location.

Nevertheless, due to the means being close to each other, the
k-means clustering algorithm was  not able to recognize the bi-
modality in the item distributions, and hence the KL-divergence
values are high for all controllers, see Fig. 12. The percentage of
uploaded items is similar for CSC and BNC and decreases with
higher item densities. AUC results in the highest upload percent-

age, see Fig. 13. Consequently, for this particular settings of near
means with symmetric configuration, BNC outperformed CSC.

It is however important to note that the item distribution of
each Gaussian can be categorized as unclustered with respect to
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Fig. 14. The fitting for bi-modal Gaussian, far means and none-symmetric item distributions, generated by (a) CSC, (b) AUC, and (C) BNC.
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F ated from the collective sample (a) the Gaussian on the right side of the robots’ starting
l  of KL-divergence over both Gaussians.
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ig. 15. KL-divergence of the bimodal distribution (near-means, symmetric) estim
ocation, (b) the Gaussian on the left of the robots’ starting location, (c) the average

he robots’ communication range. In case the Gaussian distributions
ould have had a smaller variance, CSC and not BNC would have

een the best controller (see Section 5.1).

.2.3. Far means, non-symmetric
Fig. 14 shows the fitting of the distribution estimated from the

ollective sample that is delivered by each of the three controllers.
imilar to the case of near means, CSC is able to sample both Gaus-
ian distributions. An interesting observation though is that the
urthest Gaussian is slightly better covered than the near one. This is
ue to the fact that by the end of the exploration phase, most robots
ave reached the furthest Gaussian but there was not enough time
o further diffuse and generate the most balanced coverage over
he whole arena. Nevertheless, the effect of this parameter setting
s not fundamental in the performance of CSC, since wide-enough
amples of both Gaussian are attained.

The collective sample delivered by AUC is biased to the Gaussian
earest to the robots’ starting location, with a considerably sparse
ampling of the furthest Gaussian. This effect becomes even more
ccentuated for higher item densities: the majority of the robots
ggregates at the nearest Gaussian. BNC suffers from the same
iased sampling, however to a lesser extent thanks to the block-

ng process applied by the neighbors, which stimulates a wider
ispersion of the robots across the environment.

The CSC controller results in a fairly low KL-divergence values
or both the near and the far Gaussian, see Fig. 15a and b. For AUC,
he KL-divergence improves significantly for the near Gaussian due
o the over sampling performed at that cluster, see Fig. 15b. BNC also
erforms the best for the Gaussian nearest to the robots’ starting

ocation and positions itself between AUC and CSC. When averag-
ng the KL-divergence over both Gaussians, all controllers perform
imilarly, in terms of this performance measure.

In terms of the upload percentage, CSC has the best performance,
ven better than BNC. This remarkable result can be explained by
he minimization mechanism applied during the exploitation phase
f the CSC. For BNC, the blocking by neighbours effect is minimal
ecause the two Gaussians are far-enough from each other. For
igher item densities, the blocking intensity increases and hence
he upload percentages of CSC and BNC start to converge (Fig. 16).

.2.4. Far means, symmetric
Finally, in this configuration the three controllers generate col-

ective samples that lead to a good and similar fitting, as shown in
ig. 17.

As shown in Fig. 18, all controllers achieve a fairly low KL-
ivergence for low item densities. For higher item densities, the

erformance of AUC and BNC drops while CSC sustains its the per-
ormance. This rather non-intuitive result is obtained due to the
ampling dynamics of AUC and BNC. When increasing the item
ensity, more robots will find an item in the area between the two
Fig. 16. Percentage of uploaded items for the far means, non-symmetric configura-
tion.

Gaussian distributions. Thus more items are sampled at that spe-
cific area, leading to a more difficult separation of the two Gaussian
distributions by the analyzing algorithm, and therefore higher KL-
divergence values, for those controllers. In Fig. 17, the reader can
indeed notice the higher intensity of sampling generated by AUC
and BNC over CSC in the area between the two Gaussian distribu-
tions.

Regarding the upload percentage, CSC performs equally to BNC
and samples much fewer items than AUC, see Fig. 19.

6. Conclusion

In this study, we  have investigated the application of robot
swarms in sampling environmental features that are spatially dis-
tributed over large-scale unknown environments. This problem is
of a high interest when considering future applications of robotics
systems in large-scale environments such as search and rescue, pre-
cision agriculture, and even in-body cell sampling with no external
control. We  have addressed the sampling problem under the con-
strained of a limited sampling budget (LSB) that is associated with
the limited on-board capabilities of the robots. We  have leveraged
our challenge by attempting to maximize the statistical quality of
the collective sample (measured using the KL-divergence), while
minimizing the number of samples taken and limiting the number
of samples to one by each robot. We  have proposed a novel con-
troller CSC (collective sampling controller), which relies on three
phases: exploration, detection, and exploitation to better search the
environment and represent the inter-sample distances. The perfor-

mance of CSC was  compared to two other controllers (AUC and BNC)
that were implemented as special cases and benchmark for CSC.

Our results show that both the exploration phase and the voting
mechanism used during the exploitation phase facilitate in most
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Fig. 17. The fitting for bi-modal Gaussian, far means and symmetric item distributions, generated by (a) CSC, (b) AUC, and (C) BNC.
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Fig. 18. KL-divergence of the bimodal distribution (near-means, symmetric) estimated f
location, (b) the Gaussian on the left of the robots starting location, (c) the average of KL-
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Engineering (2005) and Ph.D. degree (2011) from the
Ghent University, Belgium. His main research interests
include mobile cloud offloading, service-oriented net-
working, edge/fog computing paradigms, and service
engineering for advanced mobile applications.
ig. 19. Percentage of uploaded items for the far-means, symmetric configuration.

ases a highly accurate estimation of the parameters of the fea-
ure spatial distribution (verified using KL-divergence measure),
nd/or a high economic sampling (verified using the percentage
f the items sampled). As a future work, we would like to extend
SC so that robots become able to decide for the number of voted
eighbors autonomously based on (i) the size of the local neigh-
orhood and (ii) the experiences collected during the exploration
hase about the item densities. Furthermore, besides the uploading
ost, which we aimed to optimize in this study, other cost functions
uch as the ones account for robots’ travelling costs need to be taken
nto account.
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