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Abstract
Decentralised systems composed of a large number of locally interacting agents often rely
on coherent behaviour to execute coordinated tasks. Agents cooperate to reach a coherent
collective behaviour by aligning their individual behaviour to the one of their neighbours.
However, system noise, determined by factors such as individual exploration or errors, ham-
pers and reduces collective coherence. The possibility to overcome noise and reach collective
coherence is determined by the strength of social feedback, i.e. the number of communica-
tion links. On the one hand, scarce social feedback may lead to a noise-driven system and
consequently incoherent behaviour within the group. On the other hand, excessively strong
social feedback may require unnecessary computing by individual agents and/or may nul-
lify the possible benefits of noise. In this study, we investigate the delicate balance between
social feedback and noise, and its relationship with collective coherence. We perform our
analysis through a locust-inspired case study of coherently marching agents, modelling the
binary collective decision-making problem of symmetry breaking. For this case study, we
analytically approximate the minimal number of communication links necessary to attain
maximum collective coherence. To validate our findings, we simulate a 500-robot swarm
and obtain good agreement between theoretical results and physics-based simulations. We
illustrate through simulation experiments how the robot swarm, using a decentralised algo-
rithm, can adaptively reach coherence for various noise levels by regulating the number of
communication links. Moreover, we show that when the system is disrupted by increasing
and decreasing the robot density, the robot swarm adaptively responds to these changes in real
time. This decentralised adaptive behaviour indicates that the derived relationship between
social feedback, noise and coherence is robust and swarm size independent.

Keywords Collective decision-making · Group coherence · Social feedback · Marching
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1 Introduction

Several collective systems, in both natural and artificial swarms, rely on themechanismof self-
organisation to perform collective tasks. Self-organisation is driven by twomain components:
(i) randomfluctuations causedbynoise and individual factors and (ii) the presence of feedback
in form of external information received from peers (social feedback) or the environment
(environmental feedback) (Bonabeau et al. 1999; Camazine et al. 2003; Khaluf and Hamann
2016; Pinero and Sole 2019). Typically individuals receive these feedbacks from their local
neighbourhood due to limited sensing and communication capabilities.

In tasks that aim to achieve an agreement within the group, often referred to as collective
decision-making problems, the individual integrates the received social feedback to modify
its own behaviour and align it with its peers’ behaviour (Castellano et al. 2009; Baronchelli
2018; Bose et al. 2017; Rausch et al. 2019). Therefore, in agreement tasks, social feedback
is substantial to attain a stable coherent behaviour within the swarm. Conversely, random
fluctuations may lead individuals to a behaviour contrary to the behaviour of the majority of
the group that would reduce the swarm coherence.

The source of random fluctuations can be various, normally ascribed to noise in integrat-
ing/collecting feedback or to voluntary independent explorative behaviour of the individuals
(Tsimring 2014). On the one hand, this spontaneous exploration may drive the system away
from the consensus. On the other hand, it allows regular exploration of different behaviours
which may enable the group to better adapt to changing conditions or dynamic swarm den-
sities (Mayya et al. 2019; Wahby et al. 2019).

Ecological advantages of spontaneous exploration have been documented in many natural
systems. For example, in ant colonies foragers may undertake individual explorations even
if stable pheromone trails to food sources have already been established (Dussutour et al.
2009). However, to maximise benefits from coherence and adaptivity, the swarm needs to
find and maintain a balance between peer agreement and exploration of new solutions, which
is not a trivial task. This balance may be interpreted as an optimisation of the exploitation
versus. exploration trade-off. On the one hand, the individuals exploit an option by aligning
their behaviour with their peers and therefore maintaining coherence. On the other hand,
the individuals explore other options through random misalignment. In the current study,
we focus on the maximisation of exploitation in terms of group coherence, given a constant
level of exploration. In particular, at the individual level, this trade-off optimisation translates
in properly integrating the social feedback with noise. By noise we refer to any source of
randomness or fluctuations, including sensor noise in robotic systems or, on a more abstract
level, spontaneous exploration of new behaviours by individuals, as commonly used in the
literature (Dussutour et al. 2009; Tsimring 2014; Hamann et al. 2014; Hamann 2018).

While in nature we can observe several self-organised systems that have evolved to
maintain a balance between feedback and noise (Bonabeau et al. 1999; Camazine et al.
2003; Tsimring 2014), the problem of embedding this type of self-organised adaptivity in a
decentralised artificial swarm is an open challenge. This challenge resides in identifying the
individual rules that an agent must follow to allow the swarm to obtain the desired balancing
in a fully distributed way. In the literature, this problem is often referred to as the micro–
macro link as it aims to find a link between the macroscopic dynamics and the microscopic
behaviour (Hamann and Wörn 2008; Lerman et al. 2004; Berman et al. 2009; Reina et al.
2015a, b). In collective decision-making systems, the interplay between social feedback and
noise (e.g. individual exploration) has a crucial role in determining the collective coherence
of the group (Khaluf et al. 2017b, 2018; Rausch et al. 2019). While a general solution to
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design any adaptive decision-making system is not yet in reach, our goal is to advance the
understanding of the interplay between noise and social feedback in collective systems by
taking a bottom-up approach and by using particular case studies as a starting point for the
investigation of underlying fundamental properties.

Specifically, in the current work we focus on the prominent symmetry-breaking case
study of locust marching. This case study represents a binary decision problem scenario
where agents need to collectively decide to move in clockwise or counterclockwise direction
in a ring-shaped arena that models a pseudo-one-dimensional environment (Vicsek et al.
1995; Buhl et al. 2006; Huepe et al. 2011; Ariel and Ayali 2015). This canonical scenario
offers a suitable setting for our purposes because it focuses on the collective system’s ability
to make a decision between two options of equal value. Thus, the decision-making process
is not influenced by any environmental bias but only governed by the interplay of social
feedback and noise. In this paper, noise is represented by spontaneous switching of an indi-
vidual’s opinion independent of interactions with its neighbours. The agents cannot modify
the noise level; however, we assume that they can estimate it and adapt their social feed-
back to counterbalance it. Through this approach, we do not intend to engineer an efficient
noise-cancelling behaviour. On the contrary, we acknowledge the presence of noise as either
unavoidable or favourable (e.g. to increase group adaptivity). Our goal is to study the link
between noise and social feedback and how this relationship affects group coherence. To
put this relationship into focus, we assume the agent not to be able to cancel noise but only
to adapt its social feedback. The advantages of modulating the social feedback have been
previously investigated in systems of collective motion (Torney et al. 2009; Shklarsh et al.
2011; Khaluf et al. 2018), foraging (Pagliara et al. 2018; Pitonakova et al. 2018; Talamali
et al. 2019a; Rausch et al. 2019) and collective decision-making (Talamali et al. 2019b).

Other works focused indirectly on the importance of finding a proper balance between
the social feedback and the noise in the system in order to move from undecided system
to a decided one. For example, Khaluf et al. (2017b) studied the impact of the population
density on the ability of the system to reach coherence. The density in this case is an indirect
measure of the social feedback required to counterbalance the noise. Similarly, Buhl et al.
(2006) investigated the impact of density in the locust-marching scenario; at low densities,
locusts loose consensus on their motion direction because individuals do not receive enough
social feedback. Valentini and Hamann (2015) modelled social feedback in terms of the
number of communication links and studied how it influences the decision-making dynam-
ics. Another parameter that was studied to investigate the influence of social feedback on
collective decision-making was the networking model. For instance, in Huepe et al. (2011)
and Chen et al. (2016) the authors considered dynamically changing building blocks of adap-
tive networks and analytically derived their influence on the swarm decision. Furthermore,
network theoretic concepts were applied to analyse the impact of the number of interactions
on flocking dynamics and collective response to an oscillating signal (Shang and Bouffanais
2014; Mateo et al. 2017, 2019). Similarly, Khaluf et al. (2017a, 2018) highlighted the role
of different interaction models in enabling the system to restore a specific level of social
feedback necessary for convergence to a collective decision.

Likewise, our locust-marching case study includes fluctuations in individual decision-
making. However, differently from the previous works, we focus on the emergence and
maintenance of maximum group coherence. In particular, we analytically derive an upper
bound of the latter as well as the minimum social feedback needed to reach this upper bound.
Thus, our results contribute to the domain of swarm robotics by presenting a fundamental
link between communication, individual noise and global coherence. This link extends the
understanding of coherent collective behaviour in the presence of fluctuations in individual
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decision-making. This understanding is particularly useful in low-density systems where
robustness, scalability and flexibility are not guaranteed. We show that in such systems the
maximum coherence can be recovered in a fully decentralised manner by individuals that are
able to maintain their number of communication links.

We first introduce our locust-marching case study in Sect. 2 which includes a fixed level
of noise in the individual decision-making process. We then find a reliable estimate of the
maximum coherence degree as a function of this noise term in Sect. 3.1. From this result, we
derive a mean-field model of the minimal number of communication links required for the
social feedback to balance the noise level such that the maximum coherence degree emerges
globally (Sect. 3.2). To validate our mean-field approximation, we compare the theoretical
modelwith physics-based simulations of a robot swarm in collective locust-marching scenario
(see implementation in Sect. 4). In Sect. 5, we first show the ability of the simulated robot
swarm to adapt the social feedback to reach the maximum achievable coherence for various
noise levels. Then, we demonstrate how a swarm could potentially use the feedback–noise
balance to cope with time-varying swarm densities. We study this aspect by greatly varying
the number of robots in the system and letting the individual robots adjust the amount of
social feedback at runtime and in a fully decentralised manner. Investigating the dynamics
caused by runtime variation of the swarm size is inspired by the studies of Czirók et al. (1999)
and Buhl et al. (2006). In particular, they observed that the consensus reached by a dense
locust population is lost when the density of this population drops. In our system, the robots
react to this density drop by adjusting their communication range to reach the desired level of
social feedback. As discussed in Sect. 6, the presented swarm robotics system does not allow
direct implementation on a practical application but aims at validating through physics-based
simulations that our analytically derived feedback-to-noise balance allows a generally robust,
decentralised and swarm size-independent recovery of the maximum coherence.

2 Locust-inspired decision-makingmodel

In this work, we propose a decentralised decision-making strategy that allows individual
agents in a swarm to self-regulate their intake of information in order to autonomously
balance the level of social feedback against noise. We design such a strategy for the binary
decision problem in which a robot swarm must agree on the motion direction. The reference
decision model of this study is the prominent natural system of the desert locust-marching
bands (Buhl et al. 2006). By local interactions between the insects, the locust swarmconverges
to a consensus on the direction of motion. Previous work has shown that confining the locust
swarm in a ring-shaped arena reduces the decision problem to a binary decision problem
in which the two options are clockwise and counterclockwise marching directions (Buhl
et al. 2006). Interpreting the ring as a one-dimensional space, we refer to the two marching
directions for simplicity as left and right and analyse the collective decision in terms of the
proportion of left-goers versus right-goers. Analyses by Buhl et al. (2006) have shown that
the marching behaviour in this system can be modelled using the Czirók model (Czirók et al.
1999). This model has been later extended to the discrete Czirók model (Yates et al. 2009;
Ariel and Ayali 2015), according to which after each time step Δt = 1, both the position
xi (t) ∈ R and velocity ui (t) ∈ R of the individual i are updated as follows1:

xi (t + 1) = xi (t) + νui (t), (1)

1 As in this model agents move in one dimension, with velocity we refer to the speed |ui | multiplied by −1
or +1, depending on the agent’s motion orientation towards left or right, respectively.
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ui (t + 1) = δs [G(〈ui (t)〉) + ζi (t)] , (2)

where ν is a speed parameter and ζi (t) ∈ [−1.0, 1.0] is a uniformly distributed real random
number (i.e. source of noise). Moreover, the propulsion and friction forces are given by the
piecewise continuous function

G(〈ui (t)〉) = 1

2

[〈ui (t)〉 + sgn(〈ui (t)〉)
]
, (3)

where 〈ui (t)〉 is the average over the set of velocities of i’s neighbours and sgn (z) is a sign-
function equal to +1 if z > 0, − 1 if z < 0 and 0 if z = 0. In the following, we refer to i’s
neighbours (or i’s neighbourhood) as the agents with whom i established a communication
connection at a given time t . Note that in Eq. (2), we modified the classical Czirók model
by introducing the term δs which is −1 with probability ps and 1 otherwise, re-sampled at
every time step for each agent individually. Adding δs allows us to include in the model
the probability ps that an individual spontaneously switches its heading direction (i.e. the
sign of ui (t)),2 inspired by previous studies on symmetry breaking (Huepe et al. 2011;
Chen et al. 2016; Khaluf et al. 2018). This spontaneous switching directly contributes to
spontaneous exploration by each agent. Hence, in a technical sense, ζi (t) can be interpreted
as the individuals’ sensor noise and δs as the actuation noise (Huepe et al. 2011). However,
on a more abstract level, ζi (t) represents fluctuations in communication while δs can be seen
as an analogue to the spontaneous individual exploration. Therefore, combining ζi (t) and δs
into one single termwould be impractical and may obscure the role of individual exploration.

The sign of ui (t) indicates the marching direction and can be used to categorise each
individual as a left-goer (for ui (t) < 0) or right-goer (for ui (t) > 0), respectively, and it
represents the agent i’s opinion. Aggregating the opinions of the N agents composing the
system, we can therefore compute the collective state of the system as:

φ(t) = 1

N

N∑

i

sgn (ui (t)) . (4)

Note that Eq. (4) is different from Ariel and Ayali (2015) because, as in Khaluf et al. (2018),
we are interested in measuring the coherence in the marching direction, i.e. either left or
right. Therefore, we reduce the velocity ui (t) to the binary value sgn (ui (t)). We define the
collective coherence degree |φ(t)| as the absolute value of the measure given in Eq. (4). A
degree |φ(t)| = 1 indicates that 100% of the individuals agreed on one direction and the
system reached consensus.

3 Social feedback and noise

In our study, the social feedback perceived by agent i is the collection of velocities communi-
cated by i’s neighbours, which i uses to calculate 〈ui 〉. Thus, social feedback scales with the
number of neighbours, ni , that i is communicating with. Additionally, from Eqs. (2) to (3),
we can see that the agent dynamics are dictated by the combination of the social feedback
from the neighbours and random noise from sensors (ζi ) and actuation (δs). Each agent needs
to rely on the neighbours’ feedback in order to achieve a global agreement. However, the
feedback might be noisy either due to a sensing error of the agent acquiring the feedback (as

2 Note that ps is only related to δs and not to ζi .
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modelled by ζi ), or due to an agent that spontaneously switched its opinion (with probability
ps).

Nevertheless, an agent i could mitigate the effect of such noise through averaging the
feedback from a large enough number of neighbours ni . In the trivial case, each agent would
interact with all agents (ni = N − 1) in order to agree on a common direction. However, a
complete interaction graph may be impossible to implement in either biological or artificial
systems due to communication and/or computational limitations. In fact, communicating and
processing large amount of information can be expensive and in certain systems even impos-
sible. Therefore, the agent needs to rely on the feedback of a limited number of neighbours
(ni � N − 1). In this case, the global agreement results from the sum of local coordination
efforts. Conversely, relying on a too small neighbourhood makes the agent vulnerable to ran-
dom fluctuations of its neighbours’ output, leading to a low degree of coherence (e.g. Czirók
et al. 1999; Buhl et al. 2006). Thus, the agent faces a trade-off, and it needs to adjust the size
of its neighbourhood to minimise communication cost while maintaining high coherence
with the rest of the swarm. However, as we show in Sect. 3.2, coherence can be maximised
even for ni � N − 1 for a wide range of ps values. To compute the lowest ni for which the
highest possible coherence can emerge on the global scale, we follow a two-step approach.

First, in Sect. 3.1, we derive the maximum coherence degree that can be attained for a
given noise level ps . Second, in Sect. 3.2, we derive a steady-state approximation of the
minimal neighbourhood size that an agent must maintain to reach this maximum coherence
degree.

3.1 Maximum coherence degree |�m|

Consider a system in which the agent density is high enough for a stable coherent motion to
emerge. Then, assuming that every agent’s velocity satisfies |ui (t)| �= 0 at every t , we can
use sgn(ui ) = ui|ui | and reformulate Eq. (4) to

φ(t) = 1

N

N∑

i

ui (t)

|ui (t)|

= 1

2N

N∑

i

δs

|ui (t)| (〈ui (t)〉 + sgn(〈ui (t)〉)) + 1

N

N∑

i

δs

|ui (t)|ζi .
(5)

Recall that 〈ui (t)〉 is the average velocity of agent i’s neighbours. The second term on the
right-hand side of Eq. (5) corresponds only to spontaneous switching and the sensor noise.
Note that this term approaches zero for large N , such that

lim
N→∞

1

N

N∑

i

δs

|ui (t)|ζi = 0. (6)

Thus, for large enough N we can simplify Eq. (5) to

φ(t) = 1

2N

N∑

i

δs

( 〈ui (t)〉
|ui (t)| + sgn(〈ui (t)〉)

|ui (t)|
)

. (7)

At the steady state with maximum coherence |φm|, most agents march in the same direction
and the fluctuationswithin an agent’s communication range become negligible, i.e. the collec-
tive state φ(t) ≈ φm is time independent (φm is the collective state at maximum coherence).

123



Swarm Intelligence (2019) 13:321–345 327

In this case, the velocity ui of any agent i fluctuates around a constant value ui (t) ≈ ±1.
Hence, we can rewrite Eq. (7) by replacing the first and second terms inside the brackets
with the steady-state local collective state3 and its sign, i.e. 〈ui (t)〉|ui (t)| ≈ φi = sgn(φi )|φi | and
sgn(〈ui (t)〉)

|ui (t)| ≈ sgn(φi ). This yields

φm = 1

2N

N∑

i

δs(φi + sgn(φi ))

= 1

2N

N∑

i

δssgn(φi )(|φi | + 1).

(8)

Furthermore, at the steady state of maximum coherence local neighbourhoods are maxi-
mally aligned—i.e. the opinion of any randomly selected agent is likely to be reinforced by
its neighbours. Therefore, at the steady state of maximum coherence the system stabilises
and the direction switching occurs predominantly due to the spontaneous switching. As the
probability for this switching, ps , is equal for all agents, the local maximum coherence is
equally limited for all neighbourhoods. Therefore, the value of the global collective state
closely resembles the local collective state, i.e.

φi ≈ φm (9)

and therefore

φm = sgn(φm)
(|φm| + 1)

2N

N∑

i

δs . (10)

As δs ∈ {−1, 1} is a random variable sampled N times from

δs =
{

−1, with ps
1, with 1 − ps,

(11)

we can approximate the sum in Eq. (10) by the expected value of δs multiplied by N ; this
leads to

φm = sgn(φm)(|φm| + 1)(0.5 − ps). (12)

Taking the absolute value of Eq. (12) and solving for |φm| return the expression of the
steady-state maximum coherence degree

|φm| = |0.5 − ps |
1 − |0.5 − ps | , (13)

which is a function of only the time-independent noise term ps .

3.2 Minimum communication degree for maximum coherence

To obtain Eq. (9), which is crucial for Eq. (13), one could assume that every agent receives
maximum social feedback, i.e. the neighbourhood size of every agent i is ni → N − 1.
However, this assumption is a strong simplification that cannot be realised in most real
systems due to physical constraints and/or communication and computational limitations.

3 The local collective state φi , similarly to Eq. (4), is the opinion agreement within the local neighbourhood
of agent i , and the local coherence degree is its absolute value |φi |.
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Fig. 1 Illustration of homogeneous NCs; the circles represent the agents, the labels R and L represent right-
goers and left-goers, respectively, and the arrows represent the bidirectional communication links. In this
example, the focal agent is a right-goer (R) with the communication degree k. a Illustration of a second-order
NC, i.e. the focal agent (R) has k = 2 left-going neighbours (L). b k-order NC where the focal agent (R) is
communicating with its k = m + 6 left-going neighbours (L)

Additionally, asking every agent to process large quantity of informationmaynot be necessary
to attain consensus, or at least the maximum coherence degree |φm|, and consequently be
a waste of energy. Therefore, finding the minimum neighbourhood size ni—i.e. the social
feedback strength—that guarantees the swarm to converge to |φm| is of practical interest.

In general, the social feedback strength is determined by the agent density—i.e. the num-
ber of agents per space unit—and the communication range, with larger ni for increasing
density or communication range. Previous work investigated how agent density influenced
the collective coherence in symmetry breaking scenarios. In particular, it has been shown
that the stability of the coherent state is proportional to the agent density (Buhl et al. 2006;
Huepe et al. 2011; Ariel and Ayali 2015). Systems with low agent density either reached
low collective coherence accompanied by frequent changes between the two collective states
(where a state was given by the motion direction of the majority) (Buhl et al. 2006; Huepe
et al. 2011), or remained undecided, unable to reach consensus (Khaluf et al. 2018); accord-
ingly, highly dense systems reduced the number of transitions between coherent states and
thus reduced their flexibility to switch between the available options.

Our goal is to preserve a communication degree that is sufficiently high for the maximum
group coherence to emerge but not higher. Additionally, limiting communication to the lowest
necessary value could allow the individuals to save energy and reduce unnecessary overload.
In this section, we compute the minimal social feedback strength (in terms of the mean
neighbourhood size 〈nm〉) to reach themaximumpossible coherence degree |φm| as a function
of the spontaneous switch probability ps .

Let ρ and λ = 1 − ρ be the dynamic global proportion of the right-goers and left-goers,
respectively, and 〈n〉 the mean communication degree. Moreover, let us assume that the
encountering probability per unit time is the same for all pairs of individuals. This assumption
is a well-known random-mixing approximation (also known as well-mixed system approxi-
mation) widely applied in statistical physics to simplify the system modelling (Keeling and
Eames 2005; Gross et al. 2006). For instance, applying this approximation, the rate ωρλ of
finding a communication link between a right-goer and a left-goer is given by

ωρλ = 〈n〉ρλ. (14)

Next, consider an opinion-formation process for second-order homogeneous neighbourhood
configurations (NC), where a focal agent i has two neighbours, both of which have the
opposite opinion to i (see illustration in Fig. 1a).
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Similarly to Eq. (14), the rate for the second-order homogeneous NC illustrated in Fig. 1a
is given by ωλρλ = 〈n〉λωρλ = 〈n〉2ρλ2. Thus, although the time-dependent equation for ρ

is unknown and may be considerably complex, following Chen et al. (2016) we can apply
the above assumptions to formulate the mean-field approximation for the time evolution of
ρ

dρ

dt
= ps (λ − ρ) + π2

(
ωρλρ − ωλρλ

)

= ps (λ − ρ) + π2 〈n〉2 (
ρ2λ − ρλ2

)
,

(15)

where π2 is the probability to adopt the neighbours’ opinion in a second-order homogeneous
neighbourhood (i.e. two neighbours with the same opinion). The term ps (λ − ρ) takes into
account that each agent may spontaneously switch its opinion with a probability ps per time
step, as introduced in Sect. 2.

While Eq. (15) is a powerful tool for regular networks in which all interactions are only
of second order, it is an oversimplification for systems with larger and more complex neigh-
bourhood structures. In particular, the approximation in Eq. (14) neglects correlations of
ωρλ with the agent’s neighbourhood dynamics. For instance, ωρλ is likely to be significantly
influenced by links of higher order, i.e. communication with a higher number of agents. Thus,

to increase the precision of the model, it would be reasonable to additionally consider
dωρλ

dt
as a function of higher-order link densities such as ωρλρ , ωλρρ , ωλλρ , etc. This extension is
well known as pairwise approximation, and there is a large body of literature investigating
the validity of suchmodels in the context of opinion-formation (Kimura andHayakawa 2008;
Böhme and Gross 2012) or spread of epidemics (House et al. 2009; Danon et al. 2011; Keel-

ing et al. 2016). Similarly, considering higher-order approximations, i.e.
dωλρλ

dt
or

dωρλρ

dt
,

would further improve the accuracy of the model. However, the cost of higher precision is
increased mathematical complexity. Moreover, due to the nonlinearity of physical systems
as well as the abundance of random fluctuations and unexpected events, the derivation of
precise models may be impractical. Therefore, for the purposes of our study we choose a
different approach, which relies on the random-mixing approximation but focuses on higher-
order NCs in the limit of maximum global coherence. In particular, we extend Eq. (15) by
considering the sum of probabilities of finding k-order homogeneous NCs (for k � N − 1),
i.e. NCs in which i has k � 1 neighbours which oppose i’s opinion (such as illustrated in
Fig. 1b for a right-going focal agent). Similar to Eq. (15), we estimate

dρ

dt
= ps (λ − ρ) +

N−1∑

k=1

πk 〈n〉k
(
ρkλ − ρλk

)
, (16)

where N is the total number of agents in the swarm. Note that, as Eq. (16) shows, we are
simplifying the analysis by restricting our model only to NCs in which the neighbourhood
of i is homogeneous, i.e. in which all k neighbours oppose i’s opinion. This restriction
greatly reducesmathematical complexity while staying in good agreement with experimental
observations, as shown inSect. 5.Moreover, the assumption of homogeneous neighbourhoods
appears valid in the limit of steady-state maximum coherence, i.e. where the deviation from
local opinion homogeneity (i.e. from local consensus) is significantly reduced and dominated
by spontaneous switching. To account for the frequency and significance of this deviation,
we define the coefficient πk to be the probability that i adopts the opinion of its kth order
homogeneous neighbourhood

πk = (α|φi |)k . (17)
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Fig. 2 Minimal average degree
〈nm〉(ps ) to enable emergence of
maximum global coherence
degree |φm | (for α = 0.07)

First, the above definition of πk couples the neighbourhood coherence of i with the prob-
ability that i adopts the opinion of its neighbourhood. Second, it accommodates the fact that
the likelihood of finding a k-order neighbourhood decreases with k. Additionally, the first
factor in Eq. (17), α, is an important ad hoc scaling parameter that includes several realistic
nonlinear characteristics, such as finite-size effects due to interference within the communi-
cation range of an agent (i.e. limited line-of-sight propagation, e.g. when the communication
between two agents cannot be established because the path is physically interrupted by other
agents or obstacles), finite size of agents or bounds set by being confined within a finite space
(i.e. a bounded finite area with non-periodic boundary conditions).We assume that α satisfies
the condition 0 � α|φi |〈n〉 < 1 which is necessary for the convergence of the sum in Eq. (16)
and guarantees that 0 � πk < 1. As shown in supplementary material Sect. S1 and Fig. S1,
this condition is indeed satisfied for the maximum coherence |φm| after calibrating α with
experiment data. In the limit of N → ∞, Eq. (16) converges to

dρ

dt
= ps (λ − ρ) + (π1〈n〉)2λρ(ρ − λ)

(1 − π1〈n〉λ)(1 − π1〈n〉ρ)
. (18)

Focusing on the decided statewithmaximumcoherence,we consider the steady-state solution

for which the left-hand side vanishes (i.e. for
dρ

dt
= 0) and use φ = ρ − λ, obtaining

ps = (π1〈n〉)2(1 − φ2)

(2 − π1〈n〉(1 − φ))(2 − π1〈n〉(1 + φ))
. (19)

Finally, solving Eq. (19) yields two solutions for 〈n〉 from which only the one that returns
positive values 〈n〉 > 0 ismeaningful in our context. Thus, with Eq. (17) andwith substituting
φ2 = |φm|2 we obtain

〈nm〉(|φm|, ps) = −ps + √
ps(1 − |φm|2(1 − ps))

0.5(1 − ps)(|φm| − |φm|3)α , (20)

which is the steady-state solution for the minimal average communication degree needed for
the system to converge to the maximum coherence degree |φm|. Note that Eq. (20) is not
defined for ps = 0.5 which leads to φ = 0, i.e. an entirely undecided collective state with
ρ = λ and zero coherence. By contrast, for ps �= 0.5 we can use Eq. (13) to reduce Eq. (20)
to a function that is defined only in terms of the spontaneous switch probability ps , such that
〈nm〉(|φm|, ps) = 〈nm〉(ps), shown in Fig. 2.
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Fig. 3 Top views on the simulated robot swarm moving in a ring-shaped arena of 24m diameter. White and
black robots are left-goers and right-goers, respectively. The cyan lines represent communication links between
robots

4 Validation with physics-based simulations

To validate the model introduced in Sect. 3, we implemented the locusts’ collective marching
behaviour as described in Sect. 2 on a simulated robot swarm composed of N = 175,500
and 1500 Footbot robots (Bonani et al. 2010). The chosen N was large enough to allow
statistical reliability. We simulated the robot swarm through ARGoS (Pinciroli et al. 2012),
which is a swarm robotics simulator that accurately reproduced physical interaction and the
sensing/actuating capabilities of the Footbot.

The benefits of using physics-based simulations in our study were threefold. First, the
simulation allowed us to test to what extent our abstract, networks-driven model is influenced
by physical interference between robots, density fluctuations and communication correlation
caused by spatial effects. Second, it allowed us to examine the behaviour of a swarm in
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which the robots were unaware of ps . Third, the simulator provided a reliable platform for
testing the effect of swarm size N on swarm dynamics. Additionally, the ARGoS simulator is
programmed to simplify the transition from simulated swarm robotic experiments onto real
robotic systems to close the reality gap.

The robot swarm operated in a ring-shaped arena that supported a circular motion of the
robots; the outer and inner circles had diameters of 24 m and 4 m, respectively; accounting
for the wall thickness of 0.5 m, the accessible environment had the size A ∼ 374 m2 (see
simulator screenshots in Fig. 3). The resulting initial robot density (i.e. ∼ 1.3 robot/m2 for
N = 500) was selected to initially have a minimal level of spatial interference among robots
(Khaluf et al. 2016). For each experimental set-up, we performed 30 independent simulations,
each with a different random seed.

4.1 Robot implementation

We programmed the robots to avoid unnecessary radial movement by always maintaining an
angle of (90 ± 5)◦ when moving in clockwise direction [or (270 ± 5)◦, when moving in
counterclockwise direction] to a light beacon located in the centre of the arena, unless collision
avoidance was required. Robots sensed possible collision events using a set of 24 proximity
sensors. Collision was avoided by performing a rotation with an angle that minimised the
probability of a collision (calculated by the agent controller) without changing the sign of
ui (t), before continuingmarching. The initial position and orientation of the individuals were
sampled uniformly from the available space within the arena and [0, 2π], respectively. The
speed parameter ν [see Eq. (2)] was set to ν = 5 m/ts, following the previous works that
included the Czirók model (Czirók et al. 1999; Ariel and Ayali 2015). We use ts to refer to
the simulation time step for more accurate phrasing; however, the relation of the simulation
time to the simulated time was 1:1.

Robots communicated locally with their neighbours and exchanged their velocity ui (i.e.
the speed |ui | ∈ R+ and the sign, plus or minus, representing right or left, respectively) in
order to reach agreement on a common direction of motion. For communication purposes,
each robot was equipped with a range-and-bearing transceiver (Roberts et al. 2009) with a
uniformly distributed sensor noise ζi (t) ∈ [−1.0, 1.0]. Every agent was able to sense the
number of its communication links by counting the number of distinct received messages.
For this purpose, every time step, each robot i broadcast exactly one message with its id
and its velocity value ui (t) from Eq. (2). Two robots could exchange information as soon
as the discs defined by their communication range ri overlapped and both robots were in
direct line-of-sight of each other. Communication was therefore always bidirectional. In
robotic systems, direct communication is straightforward to implement and often preferred
to indirect communication (e.g. observing neighbours’ state via a camera) (Bayındır 2016).
The robot behaviour was built upon previous work (Khaluf et al. 2018) which has shown
how the locust-marching behaviour can be implemented on directly communicating robots
in order to qualitatively reproduce the dynamics observed in experiments with real locusts
(Buhl et al. 2006) and the predictions of theoretical models (Yates et al. 2009; Ariel and Ayali
2015).

4.2 The scenario of sudden global disruptions

To implement severe external stimuli that considerably disrupt the balance between social
feedback and noise, we simulated three sudden events, one breakdown and two influx events.
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During the breakdown the majority of robots (65% of N i.e. 325 robots, randomly chosen)
were removed from the arena so that their communication with the remaining active robots
was entirely interrupted. Therefore, the breakdown led to a substantial decrease in interactions
(social feedback intensity), causing a significant drop of the coherence degree |φ(t)|. This
event was used to investigate whether the group is able to recover the maximum level of
coherence applying Eq. (20).

By contrast, the influx events significantly increased the agent density by moving a total
of 1325 robots into the arena. At the first influx event, the number of robots was restored back
to N = 500 and the subsequent second influx event tripled the swarm size to N = 1500.
The influx events allowed to examine the group ability to maintain the maximum level of
coherence while reducing the communication effort down to Eq. (20).

4.3 Range adjustment algorithm and parameters

In our study, the robots responded to the above-mentioned sudden global changes by dynam-
ically adjusting the communication range. This response was efficiently distributed such that
each individual i could find a communication range ri that is as high as necessary for global
coherence to emerge but not higher. On the one hand, one could argue that keeping a large
ri would grant the robot a strong social feedback and ease agreement. However, a downside
to this approach would be the higher energy consumption associated with a higher number
of communication links as well as higher computational cost. Furthermore, as argued in
Sect. 3.1, there is a limit to the maximum value of coherence |φm| which depends on ps .
Indiscriminately increasing ri would at most lead to a coherence degree of |φm|, therefore
values of ri above the threshold necessary for |φm|would be inefficient, leading to redundant
computation and energy consumption, without additional coherence benefits. Finally, too
high values of ri could lead to less local and more global information exchange, resulting in
loss of scalability, robustness and flexibility of the collective system, as discussed in Sect. 3.2
and (Brambilla et al. 2013).

On the other hand, small ri would save energywhile being sufficient tomaintain agreement
for limited noise levels (or high enough agent density). However, for sparse populations or
higher noise levels, small ri would lead to low coherence levels. A further difficulty is given
by the agent density fluctuations in space and time which, in case of small static values of ri ,
would directly translate into coherence variations.

Consequently, to address all of the above challenges, we focused on finding a distributed
algorithm that allowed every agent i , unaware of the global collective state, to individually
and adaptively find a value of ri which was high enough to contribute to maximum global
coherence but not unnecessarily higher. This requirement excluded the trivial solution in
which all agents had a communication range larger than the swarm diameter. Consequently,
as the intensity of the social feedback scaled with the communication degree ni , each robot i
adapted ni by dynamically tuning its interaction range ri . The target communication degree
was set to ntarget = 〈nm〉, which was calculated by the robot controller for a given ps using
Eqs. (13) and (20). (The ad hoc parameterαwas calibrated prior to the simulation, see Sect. S1
and Fig. S1a.) The latter two equations are the key contributions of our study and setting
ntarget equal to the output of Eq. (20) allowed us to realise the desired swarm behaviour.
Through this decentralised approach, each robot i found the minimal communication range
ri that led to the maximum global agreement and guaranteed an efficient balance between
social feedback and noise.
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Table 1 Overview of parameters
used in the simulation; ts is a unit
referring to simulation time steps

Parameter Value

Initial swarm size N 500 robots

Swarm size N after the breakdown 175 robots

Swarm size N after the first influx 500 robots

Swarm size N after the second influx 1500 robots

Marching area ∼ 374 m2

Robot’s linear speed ν 5m/ts

Ad hoc scaling parameter α 0.07

Communication range increment step κ 0.1 m

Initial communication range rinit 0.3 m

In particular, each time step the robot increased (decreased) its ri by κ if ni was below
(above) ntarget, respectively (see the parameter values in Table 1). The upper limit of ri was
assumed to be larger than the arena size to ensure that every agent was able to establish
any number of communication links. Conversely, the robots could reduce the communi-
cation range to ri = 0.0. Note that due to the decentralised nature of the swarm, the
robot was not able to directly establish a connection to ni = ntarget neighbours but only
indirectly through adjusting ri . Tuning the communication range allowed the robot decision-
making to be robust against agent density fluctuations. For instance, to reach the same target
ni = ntarget, the robot needed to set its ri to higher values when local distribution of robots
was sparse and to lower values when local areas were crowded. In short, the communica-
tion range ri (t) of agent i with ni (t − 1) neighbours was computed at each time step t
as:

ri (t) =

⎧
⎪⎨

⎪⎩

ri (t − 1) + κ, if ni (t − 1) < ntarget
ri (t − 1), if ni (t − 1) = ntarget
ri (t − 1) − κ, if ni (t − 1) > ntarget.

(21)

The initial communication range was set to a minimal value, rinit = 0.3 m, approximately
the radius of a robot as measured from the centre of the robot. Due to Eq. (21), the robots
rapidly increased the range andnophysical contactwas required for communication.Note that
it was also possible to initialise the simulations with a communication range rinit � 0.3 m.
In this case, each agent adaptively reduced ri down to the value that is necessary to obtain
ni = ntarget. However, the differences in collective dynamics between high and low rinit were
not significant to the purposes of the current study (see Figs. S2 and S3 in Sect. S2 for a more
detailed discussion).

5 Simulation results

Using data from physics-based simulations, we validated Eq. (13) and Eq. (20). Additionally,
we examined the performance of the range adjustment algorithm from Sect. 4.3 with respect
to the swarm response to abrupt global changes such as agent breakdown and agent influx.
For these purposes, we proceeded as follows:

(i) In Sect. 5.1, we confirmed that Eq. (13) returns the maximum coherence degree |φm| at
significantly high values of communication degree. For this, we compared the theoretical
prediction of Eq. (13) to data from simulations in which the communication range was
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constant and at high values. Here, the range was not dynamically adjusted. However, it
was sufficiently high for each robot to obtain a communication degree ni > 〈nm〉 [recall
that the latter is given by Eq. (20)]. For this reason, we did not consider the influx events
at this point.

(ii) In Sect. 5.2, we validated Eq. (20) by comparing the results from (i) to simulations in
which the agents applied the range adjustment given by Eq. (21) to maintain ni = 〈nm〉.
Note that here ni was on average three to four times lower than in (i).

(iii) In Sect. 5.3, we tested the performance of (ii) in the event of an agent breakdown and
compared it to the performance of a null behaviour. The null behaviour consisted of
a swarm of robots with a constant communication range which was set equal to the
pre-breakdown average range 〈r〉 from (ii). Consequently, the average communication
degree was 〈n〉 ≈ 〈nm〉 before the breakdown and 〈n〉 < 〈nm〉 after the breakdown. In
addition, we considered two influx events occurring after the breakdown to validate the
group ability to reduce communication cost without losing high coherence following
Eq. (21).

5.1 Maximum coherence degree as a function of ps

We quantified the agreement between theory [i.e. Eq. (13)] and experiment for a large set of
ps values. For this purpose, we set the communication range to constant but high values to
ensure a high average communication degree, 〈n〉 > 〈nm〉, andmeasured the global coherence
degree |φ(t)| for two robot densities. In particular, we kept the arena size constant and varied
the swarm size N ∈ {500, 175} through a breakdown, as described in Sect. 4.2. In each
experiment, we tested a different value of ps ∈ (0, 1) and simulated a breakdown at time
step tbd = 2500 ts which changed the robot density from∼ 1.3 robot/m2 for t < tbd = 2500 ts
to ∼ 0.47 robot/m2 for t > tbd = 2500 ts. Figure 4 shows the time averages |φ| as a function
of ps for t < tbd = 2500 ts in panel (a) and t > tbd = 2500 ts in panel (b), i.e. before and
after the breakdown, respectively.

As Fig. 4 demonstrates, the theoretical model from Eq. (13) is in good agreement with
the experimental observations.4 However, deviations occur for low values of |φ|. This is
expected, given that in deriving Eq. (13) we assumed that the system is at the steady state
of high coherence, with local coherence degree approaching the global one [Eq. (9)]. The
assumption of Eq. (9) does not hold for low degrees of global coherence as it would in a well-
mixed system. Nevertheless, its validity is evident in our spatial system for a considerable
set of ps values for high and low robot densities. In particular, Fig. 4 shows a remarkably
good agreement of the theoretical model with empirical data for |φ| > 0.3. For ps < 0.5,
|φ| decreases as ps increases and vice versa for ps > 0.5. In the latter case, the global
collective state φ(t) switches its sign at every time step, due to the discrete nature of the
simulation time (see plots of φ(t) in Fig. S4 of Sect. S3). Moreover, as ps approaches 0.5,
the agent motion decreases significantly—and is negligible for ps > 0.5—because the time
between the orientation switching approaches Δt = 1 ts, zeroing out the distance travelled.
Consequently, agent density fluctuations vanish and the neighbourhood sizes become static.
Furthermore, as ps increases, so does the likelihood that the agent’s spontaneous opinion
switch applies also to its neighbours. Therefore, at high ps an agent switches its opinion
almost simultaneously with its neighbourhood, leading to the emergence of high coherence.
Such high switching rates may be rather rare in animals or robots if they are attributed solely
to individual failure. Nevertheless, spontaneous opinion switching with ps � 0.5 may also

4 Note that at the steady state |φ| = |φ|, where the latter was averaged over the steady-state period.
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(a) (b)

Fig. 4 Time-averaged maximum global coherence degree |φ| as a function of the spontaneous switch proba-
bility ps before (a, triangles) and after (b, circles) the breakdown event. Each data point represents the average
value and the error bars the standard deviation over 30 simulations. In the former (latter) case, |φ|was averaged
between t = 1000 ts and t = 2500 ts (t = 3000 ts and t = 5000 ts), respectively, as illustrated in the inset
for ps = 0.2. The average degrees were 〈n〉 ∈ [30, 62] (〈n〉 ∈ [21, 42]) for before (after) the breakdown,
respectively, with higher 〈n〉 corresponding to simulations with ps > 0.2. The maximum coherence predicted
by Eq. (13) (blue solid line) nicely matches the swarm robotics simulations’ results for |φ| > 0.3 (Color figure
online)

occur due to contrarian behaviour (i.e. acting against the majority) (Zhong et al. 2005; Liang
et al. 2013), malicious agents (Saldaña et al. 2017) or outsider attacks (Saulnier et al. 2017)
and is therefore worth taking into consideration.

5.2 Minimum communication degree in relation to ps and |�m|

The results in Fig. 4 were obtained by setting ri to values that were considerably high and
leading to ni > 〈nm〉. As a successive analysis, we tested whether the theoretically derived
minimal number of communication links 〈nm〉 [i.e. given by Eq. (20)] applied to the range
adjustment behaviour (defined in Sect. 4.3) was allowing the swarm to reach |φm|. For this
purpose, we selected the target communication degree ntarget = 〈nm〉. Figure 5a shows
that, for ps � 0.3 and ps � 0.7, the simulation outcome is |φ| ≈ |φm|, i.e. in very good
agreement with the theoretical maximum. We limit our analysis to ps � 0.3 and ps � 0.7
because outside of this ps range the system approaches an undecided state, i.e. |φ| ≈ 0 even
for considerably large 〈n〉 (see Fig. 4).

The high standard deviations of |φ| for ps > 0.85 originated from particular simulation
seeds for which the system remained undecided over the entire duration of the experiment.
There are two possible reasons for this observation: (i) the duration of the warm-up period,
i.e. the time period necessary to reach the steady state, was longer than the experiment or
(ii) the system could not always escape the state in which |φ(t)| fluctuates around zero, even
for very long simulation times. However, the number of simulations for which the steady
state was not reached did not decrease significantly after extending the pre-breakdown period
from 2500 to 12,500 ts. Both arguments indicate that the occurrence of a steady state with
maximum coherence may be significantly influenced by the initial conditions (such as robot
location and orientation). Another influencing factor may be the communication degree as
for very high 〈n〉 the steady state was almost always reached (low standard deviations in
Fig. 4) and for too low 〈n〉 the steady state was never reached (see supplementary material
Sect. S4 and Fig. S5). Nevertheless, we believe that high values of ps may be considered as a
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(a) (b)

Fig. 5 Time-averaged maximum global coherence degree |φ| as a function of the spontaneous switch prob-
ability ps before the breakdown event (filled triangles). The continuous curve shows |φm | from Eq. (13). a
simulations with robots that adaptively adjust the communication range to reach ni = 〈nm〉 given by Eq. (20)
(with α = 0.07); b null behaviour, communication range is constant and equal to the average communication
range of the range adjustment behaviour before the breakdown. |φ| is averaged between t = 1000 ts and
t = 2500 ts as illustrated in the inset of (b) for the null behaviour and ps = 0.2

pathological case of our system as the resulting behaviour is a continuous switch of direction
every time step and it may have limited interest for a robotic implementation.

Additionally, we compared the range adjustment approach to a null behaviour where the
communication range is constant but significantly shorter than in Sect. 5.1. Specifically, the
communication range was configured to be equal to the pre-breakdown average range 〈r〉 of
the adaptive model from Fig. 5a. On average, this created comparable conditions between
the null behaviour and the adaptive behaviour outside of the breakdown or influx events.
However, in contrast to the adaptive behaviour, in the case of the null behaviour local density
fluctuations that arose due to robot motion significantly influenced the average degree (see
Sect. S5 for more details). On the one hand, a robot i could have ni < 〈nm〉 when the
agent density is locally sparse. On the other hand, this communication degree loss was not
always compensated in dense neighbourhoods due to interference (e.g. blocked line-of-sight).
Therefore, before the breakdown, 〈n〉was on average lower for the null behaviour than for the
adaptive behaviour. Consequently, as shown in Fig. 5b, the coherence degree |φ| for ps � 0.3
was lower compared to the adaptive behaviour. This reasoning is further supported by the
comparably higher |φ| for ps � 0.7. For these ps values, the system approached a state in
which the distance travelled by the robots was zero due to the frequent opinion switches.
Consequently, the local density fluctuations (e.g. temporary crowding) disappeared and |φ|
of the null behaviour was close to the adaptive behaviour.

5.3 Swarm response to global changes

In order to understand the collective decision-making under sudden global disruptions,
we implemented the scenarios described in Sect. 4.2 and investigated the communication
dynamics for a set of spontaneous switch probabilities ps ∈ {0.01, 0.05, 0.1, 0.2}. Figure 6
demonstrates the time evolution of the average degree 〈n〉. Directly after the breakdown event
the communication degree of the remaining active robotswas greatly reduced (implying lower
social feedback intensity). However, in the case of the range adjustment behaviour, the robots
responded by increasing their communication range ri (see bottom plots in Fig. 6) according
to Eq. (21) and recovering ni ≈ 〈nm〉. As a result, the swarm was able to maintain the same
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Fig. 6 Average degree 〈n〉 for ps ∈ {0.01, 0.05, 0.1, 0.2} and the corresponding average communication range
〈r〉 (top and bottom plot of each sub-figure, respectively). For the case of the null behaviour (orange lines), 〈r〉
was set equal to the pre-breakdown time-averaged values of the range adjustment approach (blue curves). The
results are averages over 30 simulations; the shaded regions around the 〈n〉 curves show the 95% confidence
interval. Grey dashed vertical lines indicate the time of the three events in which the robot density was changed:
the breakdown at tbd = 2500 ts, the first influx at ti f 1 = 5000 ts and the second influx at ti f 2 = 7500 ts.
For all four ps , 〈n〉 was quickly recovered after both events in the adaptive behaviour, in contrast to the null
behaviour (Color figure online)

average degree as before the breakdown and compensate for the removed links (see Fig. 6,
squares). This behaviour was not observed for the null behaviour (see Fig. 6, diamonds). Fur-
thermore, in the adaptive case, 〈r〉 was rapidly decreased to the pre-breakdown value after
the first influx event and below the pre-breakdown value after the second, more severe, influx
event (see bottom plots in Fig. 6). Despite the agent density increases, 〈n〉 was maintained at
a constant level. As expected, the inverse dynamics was observed for the null behaviour.

Note that for the range adjustment behaviour, 〈n〉 → 〈nm〉 for all ps , independent of the
initial value of the communication range (see Fig. S2 in Sect. S2 formore details). By contrast,
the average degree of the null behaviour approach demonstrates significant long-term varia-
tions. These variations are a consequence of the agents’ inability to adjust the communication
range in response to agent density fluctuations as argued previously in Sect. 5.2.

Figure 7 reflects the influence of communication dynamics on the swarm ability to reach
maximum coherence degree for the four tested values of ps , averaged over 30 simulation
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Fig. 7 Global coherence degree for ps ∈ {0.01, 0.05, 0.1, 0.2}. The results are averages of 30 simulations;
the shaded regions around the curves show the 95% confidence interval. Grey dashed vertical lines indicate
the time of the three events in which the robot density was changed: the breakdown event at tbd = 2500 ts, the
first influx event at ti f 1 = 5000 ts and the second influx event at ti f 2 = 7500 ts. The grey dashed horizontal
line indicates the |φm | given by Eq. (13). For all four ps , after the breakdown the group was able to rapidly
recover coherence in the adaptive behaviour, in contrast to the null behaviour which suffered a significant drop
in 〈n〉. After the influx events, both models showed recovery of the coherence level, as expected from our
theoretical considerations due to the increase in 〈n〉 (in the null behaviour) and maintenance of 〈n〉 = 〈nm〉
(in the adaptive behaviour)

runs (see Fig. S4 for the comparison of the time evolution of φ(t) between the two behaviour
models for only one simulation seed). In general, in the adaptive approach the coherence
degree agrees well with the theory [the horizontal grey dashed lines in Fig. 7 are computed
from Eq. (13)]. By contrast, in the null behaviour the |φ(t)| mainly lies below |φm| and is
subject to significant long-termfluctuations caused by the inability to regulate communication
degree (Fig. 6). Outside of the breakdown event, motion dynamics was primarily responsible
for these variations, as discussed in the previous section and in Sect. S5. The breakdown
event caused a significant drop of coherence |φ(t)| < |φm| due to the sudden decrease in
social feedback (i.e. 〈n〉 < 〈nm〉). Subsequently, the first influx event led to the increase in
|φ(t)| back to the pre-breakdown value due to the increase in agent density. After the second
influx event, the latter is particularly high, leading to the presence of strong social feedback
and |φ(t)| → |φm| for both behaviour models.

For a more careful validation of Eqs. (13) and (20), we simulated the above behaviour for
a larger set of spontaneous switch probabilities ps . The results are presented in Fig. 8. The
figure contrasts the swarm performance of the adaptive approach to the null behaviour with
respect to reaching |φm| after the breakdown and the first influx events. As Fig. 8 shows,
applying Eq. (20) in the range adjustment behaviour enables the swarm to restore |φ| close
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(a)

(c)

(b)

(d)

Fig. 8 Time-averaged maximum global coherence degree |φ| as a function of the spontaneous switch proba-
bility ps after the breakdown event (top row, empty circles) as well as after the subsequent first influx (bottom
row, filled circles). The continuous curve shows |φm| from Eq. (13). Left column: simulations with robots that
adaptively adjusted the communication range to reach ni = 〈nm〉 given by Eq. (20) (with α = 0.07); right
column: null behaviour, communication range is constant and equal to the average communication range of the
range adjustment behaviour before the breakdown. After the breakdown, |φ| is averaged between t = 3000 ts
and t = 5000 ts as illustrated in the inset of (b) for the null behaviour and ps = 0.2; after the influx event, the
|φ| is averaged between t = 5500 ts and t = 7500 ts as illustrated in the inset of (d) for the null behaviour
and ps = 0.2

to the theoretical value of Eq. (13) after the breakdown (Fig. 8a) as well as to maintain
|φ| ≈ |φm| after the first influx event (Fig. 8c). By contrast, in the null behaviour the swarm
coherence approaches the theoretical limit only after the (first) influx (Fig. 8d), whereas after
the breakdown (Fig. 8b) the swarm coherence is considerably below the |φ| ≈ |φm| reached
in Fig. 8a. The large standard deviation values observed for ps > 0.8 in the null behaviour
can be explained using the same arguments as for the adaptive behaviour (see Sect. 5.2).

The swarm coherence values after the second influx event (i.e. swarm size increasing to
N = 1500) are not shown because they are similar to the results in Fig. 4. For the null
behaviour, the reason is the high agent density that leads to a high number of communication
links and therefore high coherence (as expected from our considerations in Sect. 3). For
the range adjustment behaviour, the maximum coherence is maintained together with the
minimum degree similar to Fig. 8a, c.

6 Conclusion

In this paper, we have studied the relationship between noise—modelled as random fluc-
tuations of agents’ opinion—and social feedback—which scales with the communication
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degree of an agent—as well as the influence of their relationship on the coherence of a col-
lective system. As a case study, we have examined a collective symmetry-breaking problem
inspired by locust-marching behaviour. In our system, the individuals selected one out of two
options—marching either in the clockwise or in the counterclockwise direction—based on
the input received from their neighbours. Additionally, any individual could spontaneously
switch its opinion with probability ps , modelling a form of noise. We have shown that this
probability determines the maximum degree of coherence that the swarm can achieve (i.e. the
maximum proportion of agents with the same opinion). Using mean-field approximations,
we have derived a steady-state estimate of the minimum communication degree 〈nm〉 (i.e.
the minimum average number of neighbours per agent) necessary to enable the collective
system reach maximum coherence degree under a specific level of noise. Remarkably, we
could formulate 〈nm〉 as a function of only the noise level ps . As social feedback scales
with the communication degree, the derived function of 〈nm〉 [i.e. Eq. (20)] represents the
relationship between social feedback and noise that leads to a coherent collective behaviour.
This minimum degree ensures that the communication between the individuals remains local
as well as energetically and computationally efficient.

To test the validity of our theoretic findings, we implemented an algorithm which enabled
an individual to adapt its communication range to reach the target communication degree
〈nm〉. Through this decentralised algorithm, the swarmwas able to reach themaximum coher-
ence degree and to online adapt to robot density changes. To test the ability of our algorithm
to adapt to robot density changes, we simulated a breakdown in which the majority of the
swarm was removed from the system and two influx events in which the swarm signifi-
cantly increased (i.e. over a thousand individuals were added to the swarm). By applying
our range adjustment algorithm, the swarm was able to implicitly sense the global changes
and respond to them accordingly. The key component of our approach was the analytically
derived minimum communication degree 〈nm〉 in terms of ps .

Remarkably, although the formulation of 〈nm〉 included one ad hoc parameter, it did not
explicitly require information about the environmental properties (such as size or shape of the
arena) nor the physical configuration of an agent. In particular, the ability of the swarm to reach
maximum coherence was independent of the swarm size as long the agents maintained 〈nm〉
individually, i.e. in a decentralised, fully distributed manner. Therefore, our results highlight
the importance of the swarm density attribute in terms of feedback density—i.e. average
number of communication links per agent—as opposed to the physical agent density—i.e.
mean number of individuals per unit area (Khaluf et al. 2017b). Although the impact of
swarm density on collective alignment has been intensively studied before in experiments
with real locusts (Buhl et al. 2006) as well as related models (Vicsek et al. 1995; Yates et al.
2009; Huepe et al. 2011; Ariel and Ayali 2015), little emphasis was put on the distinction
between feedback density and the agent density. One possible reason is that in natural systems
this distinction is less relevant as individuals tend to receive feedback from all agents within
their perception. However, in artificial systems it is common to distinguish between particle
density (i.e. number of agents per unit area of the arena) and sensor coverage density (i.e.
disc area covered by the agent’s sensor per unit area of the arena). The latter may be tuned
in a decentralised manner by the individuals, as opposed to most natural systems.

The adaptive distributed tuning of communication is vital to reduce fluctuations in social
feedback strength as a response to variations in agent density. Without the tuning of the
communication range—the null behaviour in Sects. 5.2 and 5.3—agent density fluctuations
in the agent’s local neighbourhood may lead to low levels of global coherence. Conversely,
the adaptive approach allows individuals to reduce social feedback fluctuations and lead to a
collective behaviour that is swarm size independent, robust to agent removal and scalable.
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The key contribution of our study is the analytically derived 〈nm〉. However, to enable an
adaptive behaviour in which all agents can reach 〈nm〉 we did not explicitly impose an upper
bound rmax to the communication range of the agents. Instead, we assumed that rmax may be
longer than the diameter of the arena (i.e. rmax > 25m).However, in somecases—particularly
in real robotics implementations—a shorter rmax may be desirable, which creates a trade-
off. On the one hand, a high communication range may be energetically or computationally
costly and hard to realise on real robots. On the other hand, a low rmax can lead to substantial
loss of coherence. The latter is confirmed by our simulations of a null behaviour in which,
contrary to the adaptive behaviour, all agents had a constant r = rmax < 2.5 m. Note
that even if each agent could dynamically adjust the range up to this low rmax the resulting
dynamics would be similar to our null behaviour. In particular, when rmax is low, the decrease
in agent density directly leads to a decrease in group coherence. This indicates that when
rmax is lower than what is necessary for an agent i to reach ni = 〈nm〉, the robustness of
collective decision-making is significantly reduced. By contrast, allowing the agents to reach
the analytically derived 〈nm〉 maximises group agreement without imposing a higher than
necessary communication cost. Therefore, our approach is a step towards an optimisation of
the trade-off between high coherence and low communication cost.

Nevertheless, implementing ourmodel on real robotsmay pose significant challenges such
as the exclusion of environmental noise, the implementation of range adjustment behaviour
and the estimation of the spontaneous switching rate. Although the technical realisation of a
real robotic system is outside of the scope of the current study, we believe that meeting the
challenges associated with translating our model onto real robots is not unrealistic. However,
the main focus of the current study is rather dedicated to the more abstract definition of
〈nm〉. Consequently, for the purpose of validating our theoretical model under more realistic
conditions our effort aimed not at thoroughly reproducing a real-world scenario but rather at
implementing a collective system in an environment that is far from ideal. For instance, due to
the implemented physical interference and line-of-sight blocking, the communication range
of robots in crowded neighbourhoods was confined to the nearest neighbours even without an
explicit definition of rmax. By contrast, a predefined value of rmax that is lower than the size of
the arena has themajor disadvantage of forcefully limiting the agents’ ability to establish 〈nm〉
communication links. Therefore, it is not suitable for the purposes of validating a relationship
between 〈nm〉 and the maximum global coherence. It is important to emphasise that, at its
core, the range adjustment algorithm is a tool used to enable the robots to adapt the strength
of social feedback through the number of communication links. An alternative technique
could be the adjustment of the motion speed such that faster motion leads to more frequent
communication. Nevertheless, we believe that extending our simulations to more practical
and realistic scenarios is a promising direction for future research. These scenarios should
consider realistic values of rmax as well as address other technical challenges associated with
range adjustment by real robots.

In general, our results contribute to the domain of swarm robotics by revealing a funda-
mental link between coherent collective behaviour, fluctuations in individual decision-making
and social interactions. Provided a robot is capable of dynamically adjusting its communi-
cation range, our findings can be applied to a wide range of swarm robotic decision-making
processes. In the present study, our theoretical model was tested on the simulated case study
of coordinated motion; however, other swarm robotic tasks such as navigation, path forma-
tion, flocking or foraging are also viable alternatives for further investigation and potential
application. Thus, our results have far reaching implications for the research on collective
symmetry breaking as they showcase the critical and fundamental relationship between social
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feedback, noise and coherence in collective systems, and demonstrate the ability of collective
systems to reach maximum coherence after severe external interference.
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