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Efficient random searches are essential to the survival of foragers searching
for sparsely distributed targets. Lévy walks have been found to optimize
the search over a wide range of constraints. When targets are distributed
within patches, generating a spatial memory over the detected targets can be
beneficial towards optimizing the search efficiency. Because foragers have
limited memory, storing each target location separately is unrealistic. Instead,
we propose incrementally learning a spatial distribution in favour of memor-
izing target locations. We demonstrate that an ensemble of Gaussian mixture
models is a suitable candidate for such a spatial distribution. Using this, a
hybrid foraging strategy is proposed, which interchanges random searches
with informed movement. Informed movement results in displacements
towards target locations, and is more likely to occur if the learned spatial dis-
tribution is correct. We show that, depending on the strength of the memory
effects, foragers optimize search efficiencies by continuous revisitation of
non-destructive targets. However, this negatively affects both the target and
patch diversity, indicating that memory does not necessarily optimize multi-
objective searches. Hence, the benefits of memory depend on the specific
goals of the forager. Furthermore, through analysis of the distribution over
walking distances of the forager, we show that memory changes the under-
lying walk characteristics. Specifically, the forager resorts to Brownian
motion instead of Lévy walks, due to truncation of the long straight line dis-
placements resulting from memory effects. This study provides a framework
that opens up new avenues for investigating memory effects on foraging in
sparse environments.
1. Introduction
Searching for targets whose distribution is unknown is an important problem in
behavioural ecology. Locating scarce food sources is fundamental for the survival
of the forager, and hence optimal foraging strategiesmust be employed in order to
maximize survival probability [1,2]. Random searches can optimize the search for
sparsely distributed targets [3–7], however including memory effects that change
the random search into an informed search can highly influence the search effi-
ciency of the forager [8–10]. Indeed, while random searches are a necessary
component of any search strategy, its importance decays over time if the forager
has the capacity to remember where targets are located. If all target locations
are known, the random nature of the search can be completely ignored in
favour of purely informed movement [11,12]. Thus, a trade-off between explora-
tion (based on a non-informed random search) and exploitation (based on the
gathered information) naturally arises when the target encounter rate is to be
optimized through means other than random searches. This work proposes a
hybrid foraging strategy based onmemory, wherein random search and informed
motion are alternated.

Although informed movement seems to enable further optimization of
the search efficiency, any potential memory component still relies heavily on
the efficiency of random searches for target localization. In particular, Lévy
walks have been shown to optimize random searches in environments wherein
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Figure 1. Illustrative example of the environment and the memory model for
Np = 3 patches with radius R and intrapatch mean free path λp. Targets
(black dots) are distributed homogeneously (uniformly) within the patches,
where each patch contains an equal amount of targets np. The random
search is truncated (black square) according to the truncation probability
(equation (2.2)) and the forager moves towards a sampled goal (open
circle). After the informed motion, the random search continues, with the
forager now back in the dense patch.
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the target distribution is sparse [1,3,4,7,9,13], even in cases
where targets were moving [14]. While search optimality
of Lévy walks has been observed when targets are sparsely
distributed, real-world environments are often both sparse
and patchy [15–18], illustrating scale-free, fractal-like patterns
[19–21]. These environments consist of patches containing
densely distributed targets and interpatch regions where no
targets are located (figure 1). Nonetheless, Lévy walks have
been found to be robust to such fragmentation effects
[9,22]. Moreover, Lévy walks have been found to encompass
strategies which optimize patch diversity, wherein multiple-
objectives play a key role in the random search process [13].

Patchy distributions within real-world environments
remarkably alleviate the necessity for the foragers’ cognitive
abilities to remember the exact positions of targets. Specifically,
in this study,we show that a forager can estimate patch locations
(and thus the target locations) by learning a spatial distribution
over detected targets. Furthermore, by sampling from the
learned distribution, the forager can switch to informed move-
ment in cases where no targets have been detected for some
time. Hence, a hybrid foraging strategy emerges, in which
random searches are alternated with bouts of informed
motion as a result of memory induced effects. This improves
target visitation rates by visiting regions that are known (or
assumed by the model) to contain a high number of targets.

Spatial memory is less beneficial when foraging becomes
destructive, meaning that targets are destroyed (e.g. consumed)
upon detection. Obviously, learning a spatial distribution over
target locations that constantly change due to destructive fora-
ging is futile, since a detected target’s location does not convey
any information about possible future locations. Additionally,
when the targets are constantly moving, for example in terres-
trial prey–predator systems, the advantages of memory
disappear. Indeed, as expected, memory has been found to be
more advantageous in predictable environments [23]. It is
important to note that natural resources have the tendency to
regenerate periodically, and hence a forager can, in principle,
exploit knowledge of the regeneration times in order to return
to patches rich in resources, e.g. seasonal changes. Such behav-
iour has been observed in Capuchin monkeys, which couple
spatial locations to known (learned) time-varying patch qual-
ities [24]. Stochastic regeneration rates are another type of
regeneration observed in nature, for example the nectar in flow-
ers [25], making learning the time dependence on the patch
quality more difficult. While these types of interplay between
resource regeneration and destructive foragingmay correspond
to more realistic searches, e.g. when describing foraging
behaviour of marine predators that consume their targets [26],
the empirically determined optimal Lévy parameter was
often closer to the non-destructive optimum.Moreover, in ecol-
ogy, patches are often dense [27], meaning that destructive
foraging can effectively be approximated by non-destructive
foraging behaviour since each target is within close proximity
of another. This suggests that the consumption rate of such
predators might be low enough, or that the regeneration rate
within the patch is high enough, such that their foraging can
be approximated as non-destructive. Hence, in the remainder
of this study, we limit ourselves to non-destructive foraging
tasks in static environments. Destructive foraging, foraging
with known periodic or stochastic regeneration rates, and
foraging for dynamic targets are topics for future research.

Next, we ask what features a goodmemory component for
a forager in a patchy environment should have. An example of
a simple random search that employs an infinite memory
kernel is the extensively studied self-avoiding random walk.
However, such models fail to capture memory effects that are
useful for maximizing target visitation, since in non-destruc-
tive searches revisitation of targets is a very efficient foraging
strategy. Other memory models that have been studied consist
of the general direction wherein the forager prefers to move
[28], location of a previously detected target [29,30] or a
number of targets detected within the last set of steps [9].
However, more intricate memory models have been discussed
based on diffusion models with drifts pointing towards
patches with high target densities [10,31]. These works all
indicate that memory is beneficial for maximizing target visita-
tions, given that the foraging is non-destructive, regardless of
the specific choice of memory model. Most interestingly,
(time-varying) spatial memory has been experimentally veri-
fied in Capuchin monkeys [24,32,33]. Such results suggest
that intelligent foragers are capable of maintaining a more
complex memory model that is able to estimate distributions
over targets.

In this work, we employ a Gaussian mixture model
(GMM) that acts as the memory component, since it fits all
requirements of a spatial memory. Due to their universal
approximation properties [34,35], they can be used to learn a
spatial target distribution over patchy landscapes from which
the forager can sample goal locations. An additional advantage
of a mixture of Gaussians is that each component can be
weighted differently. This enables differentiating different
patches, for example based on attributes of the patch, e.g. nutri-
tional value. Furthermore, GMMs can be learned incrementally
[36,37], allowing a forager with limited memory capacity to
store positional target information within a small number of
parameters that define the mixture model. Aside from real-
world foragers not having infinite memory capabilities, a
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major advantage is that such incremental learning procedures
can adapt easily to possible changes in the target distribution.
Actually, instead of learning a single GMM, we propose incre-
mental learning of an ensemble of GMMs as to account for a
model disagreement that measures the foragers’ certainty of
the learned distribution. This allows the foragers to make
decisions based on the estimated correctness of their memory
model [38–40]. More specifically, the random search com-
ponent of the hybrid walk is more likely to be truncated
when the forager is certain of its learned distribution over tar-
gets. We believe that the results presented in this paper are
beneficial towards understanding the influence of memory in
foraging in patchy environments.

The remainder of the paper is organized as follows. In §2,
we describe and discuss the random search and the learning
of the spatial distribution. We describe the patchy environ-
ment set-up and search efficiency measures in §3. In §4, we
present the results of numerical simulations and discuss sev-
eral properties of the resulting random search with informed
movement. Finally, in §5, we conclude the paper and present
final remarks and a future outlook on further experiments.
00026
2. Model description
We start by specifying the informed search characteristics,
which contains both a random search and a memory com-
ponent. The forager alternates between the two components
through truncation of the random search based on the learned
memory model. Such a hybrid foraging strategy shows simi-
larity with previously studied composite or adaptive Lévy
walks [41–43], however, in this work, the change in strategy
originates from the memory component of the informed
search.

2.1. Informed search
Let us first discuss the random search component of the
informed search. The random search is realized by assuming
that foragers execute a Lévy random walk. Foragers follow-
ing a Lévy walk pattern have their walk distances
distributed according to a (truncated) power law p(ℓ)∼ ℓ−α,
for ℓ0 < ℓ≤ L and where 1 < α≤ 3 is called the Lévy par-
ameter. Note that α≤ 1 corresponds to non-normalizable
distributions. For L→∞, this power-law distribution of
walk distances has the same asymptotic behaviour as the
family of Lévy stable distributions [6,44], meaning that
higher-order moments are infinite. However, in the real
world such moments can never be infinite, since they corre-
spond to infinitely large displacements. Therefore, we
employ a truncated power-law distribution

p(‘) ¼
a�1

‘1�a
0 �L1�a ‘

�a if ‘0 , ‘ � L,

0 otherwise,

(
(2:1)

that effectively truncates walk distances at the environment
size L. Here, ℓ0 is the minimum travel distance, hence omit-
ting steps of a much smaller scale that is irrelevant to the
search process [45]. It is important to note convergence of
the truncated power law of equation (2.1) towards a Gaussian
process is ultraslow, meaning that the general characteristics
of Lévy distributions are conserved during foraging [46].

In the asymptotic limit, the Lévy parameter defines the
diffusion characteristics of the random walk, being
anomalous (superdiffusive) for 1 < α≤ 3 and normal (Brow-
nian) for α≥ 3 [47]. When α→ 1, the forager moves
ballistically, i.e. only straight-line motion is visible. For inter-
mediate values, the random walk displays scale-free
characteristics with statistically relevant large jumps that
govern the diffusive capabilities of the forager. Such Lévy
walks have been found to be optimal over a wide range of
target distributions [22]. When foraging is non-destructive,
αopt≈ 2 has been found to optimize the Lévy random
search. In destructive foraging, ballistic motion with αopt→
1 emerges as the optimal strategy. Intermediate searches,
e.g. setting a degree of target revisitability through regener-
ation [48,49], give rise to intermediate values 1≤ αopt ≤ 2
that optimize the random search. Additionally, values of
2≤ αopt≤ 3 can be found when a bias (e.g. an external drift,
such as a current) is present [50]. For a more extensive over-
view of Lévy random searches, we refer the interested reader
to previous works on Lévy walks in a foraging setting [6,27].

The actual informed search alternates the Lévy random
search with memory induced informed motion, wherein the
forager steers towards a goal location sampled from its
spatial distribution. Foragers execute a Lévy random search
that is truncated based on the learned model. Every jth
walk step is followed according to the following rules:

(a) Draw a walk distance ℓj from the (truncated) power-law
distribution p(ℓ)∼ ℓ−α (equation (2.1)), and an orientation
angle θ sampled uniformly between 0 and 2π, and walk
along the sampled path with fixed steps of size ℓ0.

(b) While travelling the distance ℓj with steps of size ℓ0, the
forager scans its direct environment within a radius rt
after each step. When a target is detected, the current
walk is truncated. The forager moves to the target
location1 and stores the target location in its temporary
(limited) memory. After detection of a target, a new
walking distance and angle are sampled according to (a).

(c) After each step, when no target is detected, the forager
truncates the random search according to the number
of steps L0 wherein no target was encountered, a model
disagreement w (see §2.3) and a truncation parameter β
(see below). The probability of truncation is computed
at every step and is given by

p(L0, w) ¼ 1� exp �bL0
w

� �
: (2:2)

After the search has been truncated, the forager resorts to
exploitation by sampling a goal state from its model
qE(x, Q) (see equation (2.3))

xgoal � qE(xjQ),

where Θ are the parameters of the learned spatial distri-
bution. The forager then moves towards the sampled
goal state. After this informed motion is finished, the
forager starts the random search again at (a).

We fix the step size to the detection radius in equation
(2.1), i.e. ℓ0 = rt, hence naturally omitting steps smaller than
the detection radius, since those are meaningless within a
search context. Additionally, the upper truncation at L corre-
sponds to the limit scale of the environment. Hence, the range
rt < ℓ≤ L appropriately defines the relevant scales of the
search process.
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Figure 2. Examples of informed search for different truncation parameters β, where the task is to find 2 × 103 targets. Red dots indicate detected targets while the
black lines are the trajectory of the forager. Patches and targets within the patches are denoted by the grey circles and dots respectively. The arrow indicates the
(identical) starting position of the forager. (a) β = 10−9: Naive forager that never employs a model, but continuously explores the environment using its random
search. (b) β = 102: Greedy forager that almost always uses its model and hence quickly fixates around the first detected targets. (c) β = 10−5: Intermediate forager
that balances exploration and exploitation to generate a model over several patches. The inset displays the particular region in more detail, and includes continuous
and dotted ellipses that represent variances of the components of the Gaussian mixtures of two ensemble members (K = 2), while crosses indicate the means.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200026

4

First, let us discuss the truncation of the random search in
more detail. Specifically, we adapt the framework of Zhao
et al. [7] by including the model disagreement w in the
random search truncation probability of equation (2.2). This
is indicated by the rule that the longer the forager has travelled
and the lower the model disagreement, the more likely the forager
is to truncate its random search and exploit its knowledge. The
truncation parameter β defines the forager’s behaviour (see
figure 2 for an illustrative example). Low values of β corre-
spond to naive foragers, which require an extremely low
model disagreement before they trust their model enough
to sample goal states from. This results in the forager relying
on exploration, hence the random search will be the main
component that determines the search efficiency. By contrast,
relatively large values of β correspond to greedy foragers, that
quickly resort to only sampling goal states from their model,
even though their model might have a large disagreement
and thus likely fails to describe the true target distribution.
In between these two modes, there exists an intermediate
forager that balances exploration and exploitation and
hence is expected to optimize the search for targets. The trun-
cation parameter β is thus an important metric that defines
the behaviour of the forager.
Thememory-induced informedmovement after truncation
of the random search is defined by taking steps along a calcu-
lated difference vector between the current position and the
goal, again with steps of size ℓ0 = rt. Thus, after the informed
movement has finished, the agent is within a detection
radius rt of the sampled goal state xgoal. If the model is correct
(i.e. it correctly models the sparse and patchy target distri-
bution), each goal position corresponds to a position within a
patch, and thus each goal state is, in principle, close to a (pre-
viously detected) target. However, when the model is incorrect
this does not have to be true. During the informed movement,
the forager continues to detect targets and truncates the
informed motion once a target has been detected. This results
in a more natural search, since in real scenarios it is unlikely
that foragers will skip over available resources in favour of
some arbitrary goal, given that we assume patches with the
same attributes.

The target detection is based on a model of an effectively
blind forager that only encounters targets within its perception
range rt [5]. While it can be arguedwhether animals capable of
learning a spatial map have a limited perception radius,
empirical results indicate that these animals still display super-
diffusive random searches when foraging [29,51].
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Furthermore, in this work, the sparsity is expressed in terms of
the detection radius, hence increase of the detection radius
does not change the outcome of the numerical experiments
but simply changes the scale of the underlying foraging pro-
cess. While many animals have evolved intricate perception
methods, these are simply there to decrease the intrapatch
target density λp and hence such situations will be captured
by discussing low values of the mean free path, which we
do in §4.

Note that the truncation based on the model is sure to
decrease the diffusivity of the resulting walk. In other
words, the informed search might not carry the same diffu-
sion characteristics of the free Lévy walk, which shows
superdiffusive scaling behaviour. Depending on the target
density, a switch to less diffusive searches might be realized
by the forager, due to the searches revisiting a small set of tar-
gets within a patch with high target density, compliant with
empirical data [29,33]. We both measure the characteristics of
the resulting motion as well as introduce different search
efficiency metrics in order to investigate the informed
search in more detail.

2.2. Incremental learning procedure
In order to learn a spatial distribution over target locations,
we employ incremental learning of a GMM with a variable
number of mixture components. The variety in the number
of components equips foragers with the ability to not overfit
on the stored target locations, when a simpler model would
suffice. Furthermore, we argue that the decision of the forager,
e.g. the time at which to execute informed movement versus a
random search, should be depending on the memory model.
Hence, the GMM should be able to reflect some type of ‘cer-
tainty’ that determines the foragers’ belief that the model is
accurate. If the model is indeed accurate, the forager should
rely less on random search due to informed motion being the
superior alternative.While a single GMM intrinsically captures
the likelihood of the data given the model, ascribing ‘certainty’
to the model gives rise to an arbitrary threshold value that is
difficult to determine. Instead, we deploy the foragers with
an ensemble of GMMs from which the disagreement between
each member of the ensemble and the full ensemble is able to
reflect the model uncertainty [38–40]. Thus, the spatial distri-
bution is given by an ensemble of K GMMs, each with Mk

components (Gaussians):

qE(xjQ) ¼
XK
k¼1

Wkqk(xjQ(k)), (2:3)

with qk(xjQ(k)) ¼
XMk

j¼1

w(k)
j N (m(k)

j , S(k)
j ), (2:4)

where Q(k) ¼ ðw(k)
1 , m(k)

1 , S(k)
1 Þ, . . . , ðw(k)

Mk
, m(k)

Mk
, S(k)

Mk
Þ

n o
the par-

ameters of the kth mixture model within the ensemble, w(k)
j

the normalized weights of each multivariate Gaussian with
mean m(k)

j and covariance S(k)
j , and Wk the normalized ensem-

ble weights. The normalization of the (ensemble) weights
means that

P
j w

(k)
j ¼ 1 and

P
k Wk ¼ 1.

We assume that foragers have limited memory, hence each
forager incrementally learns the GMM [37]. While the forager
explores the environment and detects targets, it stores target
locations in its memory up to a fixed maximum number
Nmem.When the random search is truncated, the GMM is incre-
mentally updated with the latest Nmem detected targets. Next,
the target locations are divided equally over the number of
ensemble members K. It should be noted that a minimum
number of data points is needed for the ensemble to be trained.
Furthermore, GMMs are not suited to be computed over a
single data point, hence we need at least a multiple of the
total number of Gaussians as the minimum size of the dataset.
After distribution of the data among the ensemble members,
eachmember learns a new GMM over its subset of the recently
detected Nmem target locations, with the number of mixture
components between Mmin and Mmax. In other words, for
eachM∈ {Mmin,…,Mmax}, a new GMM is learned. Then, com-
pliant with existing statistical measures, the GMM with the
lowest Bayesian information criterion (BIC) is selected as
the new GMM [37]. Additionally, the weights of the new
GMM are scaled by a forgetting factor f (0 < f < 1), which
defines how much importance is attributed to the new, incom-
ing data. Values f→ 0 indicate conservative foragers, which do
not change their model with new incoming data, while f→ 1
represents progressive foragers that dispose of the current
model in favour of the new one. Note that the forgetting
factor additionally ensures normalization of the weights.
Next, the previous GMM and the new GMM are joined to
form the incrementally updated GMM. However, if the sum
of components of the updated GMM exceeds the set maximum
Mmax, Gaussian components are merged. Which components
are merged depends on their similarity, expressed in a
symmetric KL divergence

Dsym
KL ¼ 1

2
(DKL(g1, g2)þDKL(g2, g1)), (2:5)

where DKL(gi, gj) the KL-divergence between two Gaussians
gi � N (mi, Si), given by

DKL(gi, gj) ¼ log
detSj

detSi

� �
þ TrðS�1

j SiÞ

þ ðmj � miÞTS�1
i ðmj � miÞ �D,

(2:6)

where D is the number of dimensions of the Gaussian and
det(A) and Tr(A) the determinant respectively the trace of a
matrix A. Components that carry the lowest values of the sym-
metric KL divergence are merged, i.e. components that are
most similar, until the total number of components is equal
to Xmax. Merging of two Gaussians is defined by the following
set of equations [36,37]:

w� ¼ w1 þ w2 (2:7)

m� ¼ w1m1 þ w2m2

w1 þ w2

S� ¼ w1S1 þ w2S2

w1 þ w2

(2:8)

þ w1w2

w1 þ w2
ðm1 � m2Þðm1 � m2ÞT , (2:9)

where the asterisk denotes the new Gaussian. The merged
Gaussians are deleted from the GMM and replaced by the
newly merged Gaussian. An illustrative example of the final
result of the learning procedure is depicted in figure 2c.

2.3. Truncation of the random search
With the spatial distribution inplace, the forager needs todecide
whether to truncate the current random search in favour of
informed motion towards known (estimated) target locations.
To compute the truncation probability of equation (2.2), the
agent explicitly computes an uncertainty w over the learned



Table 1. Overview of used variables.

environment random search model

L size of the environment ℓ0 minimum travel distance w model disagreement

R size of the patches ℓj walk distance of walk step j K number of ensemble members

Np number of patches α Lévy parameter Mk number of Gaussian components

np number of targets per patch ηs search efficiency Mmin minimum number of components

N total number of targets ηp patch search efficiency Mmax maximum number of components

λe mean free path p search truncation probability

λp intrapatch mean free path β truncation parameter

rt detection radius L0 steps without target detection
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ensemble. This uncertainty, themodel disagreement, is defined as
the KL divergence between each member of the ensemble and
the full ensemble distribution

w ¼ 1
K

XK
k¼1

DKL½qk(xjQ(k))kqE(xjQ)�: (2:10)

Divisionby the numberof ensemblemembersK ensures that the
influence ofmemory is independent of the number of ensemble
members. Since there does not exist a closed form solution for
computing the KL-divergence between (ensemble) mixtures of
Gaussians, like there is for two Gaussians in equation (2.6), we
resort to Monte Carlo approximation [52], where

DKL½qkkqE� ¼ DMC½qkkqE� ¼ 1
N

XN
i¼1

log
qk(xijQ(k))
qE(xijQ)

, (2:11)

with xi � qk(xijQ(k)) samples from ensemble member k. Note
that even though the result is only exact in cases where
N→∞, the forager does not require high accuracy of the inte-
gral, since it is not interested in the precision rather the order
of magnitude of the disagreement.

2.4. Model overview
In summary, hybrid foraging encapsulates both a random
search and informed motion based on the memory model. The
forager learnsanensembleofGMMsoveradatasetof targetpos-
itions detected during the random search. From this ensemble,
themodeldisagreementw is computed,defining theuncertainty
the forager has over the distribution of targets. The tuning par-
ameter β determines the truncation probability p(L0, w), which
increases with the number of steps without detecting a target
L0. The truncation probability depends on the model disagree-
ment, where high model disagreements result in lower
truncation probabilities, hence longer random searches, than
when themodeldisagreement is low, corresponding tomore fre-
quent informed motion towards sampled goal targets. For an
overview of all parameters used in this study see table 1.
3. Methods
3.1. Environment description
We consider a two-dimensional (2D) L × L space with periodic
boundaries. Theperiodicboundaryconditionseffectively reflect infi-
nite environments, akin to natural habitats being much larger than
the forager itself. The forager is particle-like and is able to detect tar-
gets within a direct detection radius rt. The task of the forager is to
find a fixed number of targets, i.e. the search is only halted after a
specific number of targets have been detected. As an indication of
the target sparsity, the mean free path λe can be computed by denot-
ing that the cross-section of the targets equals 2rt and the density ρ =
NL−2 can be expressed in the number of targetsN and the area of the
environment. The mean free path indicates the average distance
between consecutive targets and is given by

le ¼ L2

2rtN
: (3:1)

Several sparsities can be studied by fixing the values for rt andN, and
varying λe which defines the environment size using equation (3.1)
[4]. Note that the above expression for λe holds in general for any
distribution over targets, thus including sparse and patchy distri-
butions, however, it is less useful when the environment is patchy.
In those cases, the intrapatch mean free path is more appropriate. In
patchy environments, the targets are divided over Np patches, with
each patch containing np targets, hence N=Npnp. Then, the intra-
patch mean free path λp (the mean free path within the patches)
can be computed if we consider the patches to be non-overlapping
circles with radius R=wL < L, 0≤w≤ 1. Then we have

lp ¼ pR2

2rtnp
¼ pw2L2

2rtnp
: (3:2)

The intrapatch mean free path can be expressed in terms of the
mean free path, through combining equations (3.1) and (3.2), giving

lp ¼ pw2Nple: (3:3)

Note that the mean free path and the intrapatch mean free path are
indeed equal if the total area of all the distinct patches equals the
total area of the environment. This allows us to forego the use of
the mean free path λe in favour of the intrapatch mean free path
λp, which is the relevant statistic in patchy environments.

In all following experiments, the forager is equipped with the
task of finding a minimum of N = 104 targets. Within the environ-
ment, we distribute np = 1000 targets uniformly within each
patch, where the radius of each patch is set to R = 0.1L. The
total number of patches is set to Np = 10. The size of the environ-
ment L is determined by the intrapatch mean free path λp, and is
computed following equation (3.2). The step size, and sub-
sequently the detection radius, is the unit for the system and is
hence chosen to be rt = 1. Results are averaged over 500 realiz-
ations, unless mentioned otherwise.
3.2. Search efficiency
In random searches, the efficiency of the process is often tightly
interconnected with the survival of the forager, e.g. individuals
might starve if they do not find enough food [53,54]. Hence, an
appropriate metric that captures the efficiency is necessary.
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Obviously, one cannot uniquely define a search efficiency metric
that captures all possible constraints. Such constraints can
vary from minimizing the time in between subsequent target
visits [50] to minimizing energy consumption along the foraging
trajectory [53–55].

We define two separate search efficiencies. The first search
efficiency ηs defines the rate at which targets are detected. It is
defined by

hs ¼
n
d
, (3:4)

where n indicates the total number of targets found and d
denotes the total distance travelled by the forager. This definition
of the search efficiency has been widely deployed for studying
random searches [3–7,22]. However, as correctly identified in a
previous study [13], it fails to capture patch diversity. While
the search efficiency of equation (3.4) correctly measures the
number of targets per travelled distance unit, it does not capture
from which patches these targets originated. The result is that
revisitation of a single target, or a few close-by targets within a
single patch, greatly increases the search efficiency. We shall
see that such behaviour indeed occurs when memory effects
are strong, and hence the search efficiency that follows the
above definition might not reflect more realistic scenarios,
where patch diversity is also of importance. Multi-objective
exploration might be beneficial for several reasons, all depending
on the attributes of the patches (or targets). For example, the
patches can differ in quality, hence constraining the search to a
small subset of the number of patches might not optimize the
total quality gain. Patches might also contain different types of
targets, e.g. water and food, which are both necessarily for survi-
val of the forager. Hence, following Wosniack et al. [13], we
define the patch search efficiency as

hp ¼
1
d

N�
p

Np

XN�
p

m¼1

nm 1þ j�n� nmj
nm

� ��1

, (3:5)

where d is again the total distance travelled by the forager, nm is
the number of targets in patch m, �n ¼ M�1 P

m nm the mean
number of found targets per patch and N�

p the number of distinct
patches visited. Note that the denominator is minimized if
�n ¼ nm, meaning that to optimize ηp, all patches should be visited
an equal number of times. Mathematically, the search efficiency
of equation (3.4) is recovered if N�

p ¼ Np and �n ¼ nm. This
represents a homogeneous environment, i.e. each ‘patch’ only
contains a single target. Furthermore, note that one can adapt
the definition of equation (3.5) to account for the interpatch
differences, by labelling targets by their different attributes
[13]. Extending both the memory model and the search efficiency
to account for different types of targets is a topic for future work.
4. Results and discussion
4.1. Random search without memory (β = 0)
Let us first discuss the random search that occurs when the
truncation probability equals 0, which corresponds to β = 0.
In this case, there are no bouts of informed movement, hence
the entire search is a random search. We study the random
search efficiency in heterogeneous environments as a compari-
son against the proposed memory models, which shall be
discussed in a later section. We measure the (patch) search
efficiency of the foraging process for different values of the
intrapatch mean free path λp. Results are shown in figure 3,
and identify the existence of an optimal Lévy parameter αopt.
The search efficiency ηs is maximized for αopt≈ 2, regardless
of the value of λp.

Recall that ηs is optimized throughmaximizing the number
of targets detected while simultaneously minimizing the tra-
velled distance. Intuitively, this is achieved by interchanging
local search within dense patches (Brownian motion, α→ 3)
with global displacements in search of other regions with
high target density (ballistic motion, α→ 1). Sparse patches
henceforth lead to intermediate values of α≈ 2 being optimal.
This is congruent with the well-established optimum in
sparse, homogeneous environments [3,4,22].

By contrast, the patch search efficiency ηp is optimized by
slightly more ballistic strategies, as indicated by the arrows
that highlight the optimal value for α (figure 3). Recall that ηp
is optimized when each patch is visited an equal number of
times. Hence, due to the truncation of the walk at target detec-
tion, it is more difficult to exit a patch when patches are dense
(small λp), while the forager needs to exit its current patch in
order to maximize the patch search efficiency. The shift of the
optimum to more ballistic strategies is therefore resulting
from the fact that these foragers are more likely to exit the
patch and thus are more likely to increase the number of dis-
tinct patches visited, hence the increase in search efficiency.
Thus, when patch diversity is of key importance, more ballistic
strategies are preferred (see also [13] and references therein).
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4.2. Informed search with memory (β > 0)
Next, we study the influence of the truncation parameter β on
the both search efficiencies. Note that the informed search is
executed only after the model has been initialized, which
occurs after the minimum number of targets Nmin = 100 have
been detected through means of a random search. In other
words, the informed search is always preceded by a random
search, until a minimal number of targets have been detected
through means of a random search. The targets found in this
initial random search, act as the prior data for initializing the
ensemble of GMMs that are incrementally updated with new
batches of target positions found during the informed search.
In all following experiments, we set the number of ensemble
members K = 3, and the minimum and maximum number of
components permember to be 1≤Mk≤ 10. Note that themaxi-
mum number of components is equal to the number of patches
Np. For the Lévy parameter α, we chose the optimal value con-
form the random search, α = 2 for the search efficiency ηs and
α = 1.8 for the patch search efficiency ηp. Results for various
intrapatch mean free paths are shown in figure 4, which
obviously indicate optima with respect to the memory
strength β.

First, the search efficiency is maximized when memory
effects are strong, figure 4a–d. As indicated earlier, revisitation
of a select number of targets is highly beneficial for optimizing
the search efficiency as defined in equation (3.4). Indeed, as
illustrated in figure 5, the total number of unique targets
(and patches) visited decreases when the memory strength
increases. Hence, the forager indeed favours revisitation of a
small fraction of the total number of targets, since its explora-
tive motion is truncated due to strong memory effects,
resulting in more informed movement towards the detected
clusters of targets. Furthermore note that the search efficiency
decreaseswhenmemory effects increase evenmore in strength.
Since searches are ended after a fixed number of targets have
been detected, the increase in variance results from an increase
in variance of the distance travelled. This is indeed the case, as
is shown in the inset of figure 6. Note that the variance increase
is more substantial in very sparse environments, since target
detection is inherently more difficult in those cases. Due to
this sparsity, goals sampled from the spatial distribution
learned over the targets detected during the initial random
search may not be in close proximity of an actual target.
Hence, the informed movement potentially has to be repeated
several times, which results in the observed variance increase
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in the travel distance and subsequently both search efficiencies.
Furthermore note that, as expected, more distance needs to be
traversed to complete the search task whenever the target
sparsity increases.

Next, the patch search efficiency displays interesting
trends. It is optimized for much more explorative strategies,
with β as low as 10−7 (conform to the explorative forager in
figure 2). Thus, increased memory strength actually decreases
the diversity of patch visitations, as also discussed above
(figure 5), and more explorative behaviour is preferred. This
originates from the choice of incremental learning of the
ensemble of GMMs, since the ensemble members that were
learned from the initial batch of detected targets can be
sampled from much further into the informed search process.
The influence of the initial set of detected targets can be
adapted by the aforementioned forgetting rate, which controls
how conservative the forager is when new targets are encoun-
tered. However, even when the forgetting rate is tuned such
that all old target locations are forgotten, i.e. the incremental
updating of the GMM is effectively replaced by learning a
new GMM over the new target locations, the new target
locations will most likely be around the old target locations
when memory effects are strong. Hence, most of the different
patches visited during the task are already visited during the
initial random search, and memory does not increase the
chance of detecting faraway regions rich in resources. In
other words, foragers that strongly depend on their memory,
are much more conservative and seldomly venture outwards
to discover new patches, which is detrimental to patch search
efficiency. If a high diversity of patches is preferred (or
required, see §3.2), high memory strengths are sub-optimal.
This indicates the long-term memory effects are not beneficial
towards optimizing target diversity.

The patch search efficiency displays a minimum for inter-
mediate memory strengths, which is more pronounced when
targets are sparsely distributed within the patches (figure 4e–h).
These minima arise from long bouts of exploration wherein
no target was detected, only truncating the walk in favour of
informed motion after a relatively large number of steps.
These bouts result in the forager venturing out into unknown
territories. However, due to the sparsity of the target distri-
bution, it is unlikely to detect targets during these ventures.
Hence, the forager travels more (unnecessary) distance before
giving up on the search and travelling back to known
territories. Such hesitations, i.e. no true commitment to
exploration, result in an increase in the travel distance that is
not accompanied by an increase in the number of targets
detected (as indicated in figure 5), hence the resulting decrease
in patch search efficiency for intermediate values of β.

Finally, patch search efficiency again increases when
memory strength increases, compared to intermediate
memory strengths. This increase originates from the efficiency
of the revisitation strategy of the forager, as the number of
unique targets (and patches) visited do not change when
the memory strength increases further (figure 5). However,
venturing into unknown regions is suppressed due to higher
truncation probabilities resulting from larger values of β.
Essentially, this results in similar revisitation as intermediate
memory strengths exhibited, while decreasing the distance
travelled in between target revisitations (figure 6). In turn,
this reduction in travel distance increases the patch search effi-
ciency, however, the increase does not rise above the optimum
reached for more explorative strategies, realized through small
values of β.
4.3. Memory affects walk characteristics
Next,we discuss the characteristics of thewalk that results from
both the truncation at target detection as well as the memory.
Specifically, the distribution over walk distances changes
from a power law to an exponential distribution, which
indeed does not possess the fat tails endemic to power-law dis-
tributions. As illustrated in the example trajectories of figure 2,
memory greatly influences the randomwalk. Strongermemory
effects (i.e. greedy foragers, high β), tend to more localized be-
haviour around the first few patches wherein targets are
detected, hence disposing of the statistically relevant long-
range displacements typical of the Lévy walk. Moreover, the
power-law tail observed in Lévy walks is often absent when
target densities are high, regardless of memory [1].

We demonstrate this in more detail by executing an
informed search for a fixed number of targets, wherein we
define an episode to be a time window wherein the model
remains fixed. Thus, an episode ends at the same time the
random search is truncated and the model is (incrementally)
updated. First, the model disagreement w is plotted, including
the single-step truncation probability p(1, w), in figure 7a,b.
The model disagreement decreases as the number of episodes
(model updates) increases. Naturally, the corresponding trunca-
tion probability depends heavily on β, as the intermediate
forager has a single step truncation probability of effectively 0
(figure 7a). However, the greedy forager is very likely to trun-
cate its random search after a single step after a few model
updates due to the combination of a low model disagreement
w andhigh value of β. As a result, the greedy forager repetitively
only visits targets frommemory and omits exploration entirely.

Next, we record the walk distances within each episode,
which can be truncated due to target encounters. Using the
distribution over walk distances within each episode, we can
fit a (truncated) power-law distribution and compute an
approximate value for the Lévy parameter α. However, fitting
a distribution is misleading due to the fact that the underlying
data might not be described by the candidate function [56–59].
Therefore, the log-likelihood ratio (LLR) between a (truncated)
power law, which indicates anomalous diffusion, and an expo-
nential distribution, which is indicative of Brownian-like
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diffusion, is computed. For this computation, we use existing
and well-established libraries [57].

We report results for two distinct types of foragers; inter-
mediate and greedy (figure 2). The naive forager is not
shown, since those do not adapt their model due to their
truncation probability being effectively zero, hence the
search consists of a single episode which indeed obeys a
power-law distribution over walk distances (results not
shown). As seen in figure 7, the intermediate forager has
walk distance distributions that obey a power law, up until
the task is completed. In contrast, the greedy forager changes
its walk behaviour to Brownian motion the more its spatial
distribution is updated. The result is that, approximately,
both the fitted power-law component α≥ 3, and LLR < 0,
indicating that the distribution over walk distances does not
follow a power law but is more likely to obey an exponential
distribution, i.e. Brownian motion [1]. Memory thus affects
the walk distance distribution, inducing less diffusive
motion in favour of revisitation of a select area rich in targets.
This decrease in diffusivity directly results in the previously
mentioned suboptimal patch search efficiencies reached
when memory effects are strong, since those are optimized
with more ballistic strategies (see figure 3 and [13]).

Whereas assigning power-law distributions to empirical
datasets of walk distances needs to be handled with caution
[58,59], our rudimentary study of the underlying distri-
butions illustrates that the diffusivity is not necessarily
determined by the underlying sampling procedure [1].
Indeed, random walks with memory induced relocations to
previously visited locations, have been shown to display sub-
diffusion [30]. Moreover, Brownian motion induced by
memory is favoured over more ballistic Lévy walks when tar-
gets are more difficult to encounter [10], indicating that the
switch to more Brownian-like motion aids non-destructive
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careful analysis on the effect of spatial memory on the move-
ment pattern of the forager is beyond the scope of this paper.
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5. Conclusion
We have investigated the effects of spatial memory on the
search efficiency in patchy environments. Spatial memory
constituted an ensemble of GMM. The resulting hybrid fora-
ging strategy, alternates Lévy walks as random searches with
memory induced walks. The truncation probability, which
indicates the switch between the two distinct walks, increases
with the number of steps since the last target detection and
the decrease of the model disagreement. We have shown
that non-destructive foraging is optimized when memory
effects are strong and the search efficiency is defined solely
through the rate of target detection per unit travelled. How-
ever, strong memory effects result in high revisitation rates
of a select fraction of the targets, often within a small portion
of the available patches. Thus, explorative behaviour is pena-
lized due to increases in the travelled distance not being
accompanied by similar increases in the number of targets
detected. This identifies a trade-off between the search effi-
ciency and patch diversity. The trade-off is not trivially
solved by intermediate memory strengths, since in sparse
environments the patch search efficiency is actually mini-
mized when the memory strength is intermediate. As a
result, the benefits of memory heavily depends on the
needs of the forager. If a high diversity of targets is required
for survival, then more explorative motion is preferred,
whereas memory serves more useful in sparse environments
in which targets can be revisited indefinitely.

Where we have assumed an infinite regeneration rate by
assuming non-destructive foraging, we believe that the
results might also be beneficial for finite regeneration rates.
Notably, the benefits the forager obtains from using a spatial
memory strongly depend on the regeneration rates of targets.
When resources are sparsely distributed, but do regenerate
over potentially long periods of time, memory might serve
as a very useful tool that increases survival chance due to
enabling revisitation of previously exhausted patches that
have regenerated [60]. Moreover, finely tuning memory
strengths with potential periodicity of the availability of the
targets, e.g. seasonal growth of food, might greatly reduce
search times and energy consumption and as a result increase
the search efficiency [61]. In addition, random walks without
memory also exhibit a switch from superdiffusive walks to
ballistic motion as the target regeneration time changes
from zero (non-destructive) to infinity (destructive) [49].

Furthermore using an ensemble of GMMs as a spatial dis-
tribution enables researching attribute dependent behaviour.
Since each member of the ensemble consists of a mixture
of Gaussians, weighting the Gaussians differently when
sampling goal states can be coupled to certain attributes of
the targets whereover the Gaussian was fitted, e.g. patch or
target quality. Additionally, each member can represent differ-
ent types of targets in order to account for balanced target
detections, furthermore accompanied by the aforementioned
possible adaptations of the patch search efficiency. Future
studiesmight indicate that foragers that aim to optimize overall
target diversity, benefit more from an ensemble of differently
weighted spatial distributions.

Lastly, it is important to note that the Lévy walk paradigm
has been criticized as being unrealistic [45], mainly because tra-
ditional implementations of the Lévy walk omit directionality
resulting from a continuous decision process. An effect of the
continuity of the foraging process, is that any organism can
change its behaviour at any instant in time [62]. In this work,
the decision process of the forager is continuous as the forager
decides to continue or truncate the search based on its current
available information from both from its perception as well as
its memory. An additional critique was that the spatial scales
whereover the walk characteristics are determined should be
relevant to the foraging process, something that we have
achieved by sampling walk distances using a truncated
power law. Hence, while further investigation on the motion
of foragers is warranted, we have directly tackled the main cri-
ticisms of the Lévy walk paradigm by inclusion of the
truncation probability depending on memory.

This study has indicated that spatial memory is not necess-
arily beneficial towards detecting a diverse set of targets. We
have identified strengths and weaknesses of a potential spatial
memory candidate, which suggests that the balance between
using memory versus naive random walks is fickle and is in
much need of further study.
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Endnotes
1In our study, the perception radius is of equal size as the step size of
the forager, trivializing the process of the forager moving to the target
location. However, when the perception radius is much larger than
the step size, the forager should compute a relative angle between
itself and the detected target and travel in that direction until it is
on the target.
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