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Abstract. Robot swarms often use collective motion. Most models gen-
erate collective motion using the repulsion zone, alignment zone, and
attraction zone. Despite being widely used, these models have a limited
capacity for generating group structures in response to environmental
stimuli. Enabling robot swarms to display proper spatial structures is
crucial for several swarm robotics tasks. In this paper, we focus on three
spatial structures that allow the swarm to adapt its aggregation (cov-
erage) and alignment (order) in response to environmental changes. We
show that the metric and long-range models are unable to generate ev-
ery structure. We propose an extension to the metric model that allows
the swarm to display the three structures, which is demonstrated in a
simulated dynamic environment where different stimuli appear over time.

1 Introduction

Collective motion is nature’s most fundamental demonstration of coordinated
activity, performed by bird flocks, fish shoals, and human crowds [25]. Emergent
behavior results from individuals’ interactions to perform tasks like foraging or
migrating. Collective motion is important in artificial systems like robot swarms,
which simulate social animal behavior. Individual robots have basic abilities, but
when they work together in groups, they can perform more complex behaviors
like foraging [19,7,17,16], exploration [20,10], and collective perception [23,12].

Many activities in robot swarms need collective motion. Navigation from a
source to a destination, forming topologies, tracking targets, and moving objects
are among the examples. Depending on the particular task, specific structures
need to be displayed in the swarm. For example, the swarm needs to aggregate
while navigating through narrow paths, and to expand while exploring new en-
vironments. A large number of theoretical [4,6] and empirical [3,11] studies have
proposed models to generate collective motion. Most of these models consider
short-range repulsion and long-range attraction among the individuals, in ad-
dition to the alignment of velocities along with the their (nearest) neighbors
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[25]. These models show high efficiency in generating aligned motion based on
simple individual rules. However, there is little to no evidence on whether such
models can modify spatial features of the group (e.g., structure) as a response
to environmental stimuli.

In this study, we use two system measures to define our target structures:
swarm order (an expression of alignment degree) and swarm relative coverage (an
expression of compactness). The swarm displays three target structures based on
environmental stimuli: (a) high coverage, low order (HCLO), (ii) high coverage,
high order (HCHO), and (iii) low coverage, high order (LCHO). Individuals have
different orientations in HCLO to maximize coverage (low order). This structure
is desired for exploration tasks, where robots must observe the environment in
all directions and maximize inter-individual distance. HCHO is a high-order,
high-coverage swarm. This structure navigates tasks while maximizing coverage
(e.g., navigation with exploration). In LCHO, the swarm aggregates, maintaining
a high order and high density. This structure can transport items or navigate
narrow spaces. All three structures require swarm connectivity (i.e., remain in
a single cluster). The aforementioned tasks can also be combined (e.g. search
and rescue), which requires the swarm to adapt its structure based on observed
stimuli in the dynamic environment.

We consider two models of collective motion: the metric model, where each
individual interacts within a defined radius, and the long-range model, where
short-interactions occur topologically and long-range interactions randomly. Our
results highlight the metric model and long-range model’s limitations to gen-
erate the above-mentioned structures. We propose an extension to the metric
model that allows the swarm to switch between the three structures. We test
our extended metric model (EMM) in a simulated dynamic environment, where
different stimuli appear over time and are perceived by few individuals.

We show how HCLO, HCHO, and LCHO emerged and how EMM scales with
system size. This paper continues as follows. In Section 2, we review collective
motion models. In Section 3, we describe the other models we use. In Section 4,
we discuss the key results. Section 5 concludes this paper.

2 Related Work

To generate collective motion and group cohesion, many models have been pro-
posed. Models from biology and physics [21,9,13,24,8] suggest simple rules of
interaction among individuals can induce collective motion. Such rules capture
attraction, repulsion, and alignment [21]. Most of these models use metric dis-
tance. These models assume individuals align and attract each other, and that
interaction declines with distance. Vicsek model [25] uses neighbor’s velocity
to exploit individuals’ alignment. The Couzin model [5] is used in theoretical
biology and group robotics. This paper uses the Couzin model.

Special cases of the metric model were suggested and became widely used,
such as the topological model [2,1], in which each individual interacts with a
fixed number of neighbors.The topological model was suggested based on ex-
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perimental findings of birds flocking [1]. The model proposed in [18] accounts
for sensory-imposed interaction limitations, and is a special-case of the met-
ric model. Individuals only interact with visually observable neighbors. In [26],
the authors show how long-range models, which introduce long-range alignment
interactions between individuals, prevents group dispersion in open spaces.

Several studies have examined spatial structures in natural organisms. [14]
studied Zebrafish shoals and schools. This work investigated model parameters
other than group density that may impact these two structures. Both [5,22]
studied how individual heterogeneity affects spatial position in the group, leading
to specific structures. In [15], the authors highlight the importance of system size
and the number of influential neighbors on the emergence of different structures.
Despite interesting results, the work doesn’t explain how the model can generate
spatial structures. The obtained structures were dispersed rather than clustered.

3 Model

3.1 Metric and Long-Range Model

Each individual i updates its direction of motion based on the neighbors’ poses
in the three non-overlapping behavioral zones around i. Each behavioral zone
corresponds to a distinct interaction; (i) repulsion from others inside the circular
zone with radius ZoR, (ii) alignment of orientation with others inside the zone
with width ZoO, and (iii) attraction to others inside the zone with width ZoA.

The metric and long-range models differ from each other by neighbor se-
lection. For the metric model, the neighbors Ni of individual i consists of all
individuals within the interaction-radius RoI = ZoR+ ZoO + ZoA [5]. For the
long-range model, the neighbor set Ni is the union of the set of m nearest neigh-
bors Mi and κi randomly selected neighbors of Ni\Mi [26], where κi is sampled
from a Poisson distribution with average κ.

Let N r
i , N o

i , and N a
i denote the distinct subsets of neighbors by separating

Ni based on the repulsion, orientation, and attraction zones respectively. Let us
define rij as the relative position of individual j from i, and qi as the direction
vector. The new direction computed with weights αr ≥ 0, αo ≥ 0 and αa ≥ 0 as:

q̂i(t) = −αr

∑
j∈N r

i

rij(t)

∥rij(t)∥
+ αo

∑
j∈No

i

qj(t)

∥qj(t)∥
+ αa

∑
j∈Na

i

rij(t)

∥rij(t)∥
(1)

3.2 System Measures

To quantify whether all individuals move in approximately the same direction, we
measure the amount of order Ψ defined as Ψ(t) = 1

N ∥∑N
i=1 qi(t)∥. Furthermore,

we define the relative coverage as Ω(t) = A(t)
A(t0)

, with A as the area of the convex
hull of the set of robots and t0 as the starting time step. Finally, the number
of clusters is measured where individuals i and j are part of the same cluster if
their relative distance is lower than the interaction-radius RoI.
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3.3 Extended Metric Model (EMM)

Our proposed model, the extended metric model (EMM), relies on adapting
the impact of the behavioral orientation zone while following the same neighbor
selection approach as the metric model. In order to obtain a relative coverage
Ω > 1 with low order Ψ ≈ 0, we maintain the width of the orientation zone
ZoO, but set αo = 0 in Equation (1)—i.e., deactivating the orientation zone.
Consequently, individuals are able to spread out until attraction interactions
ensure that they remain cohesive. Transitioning to high relative coverage Ω > 1
and high order Ψ ≈ 1 is then accomplished by resetting αo > 0 (i.e., activating
the orientation zone). To obtain a low relative coverage Ω < 1 with high order
Ψ ≈ 1, the width ZoO is decreased while keeping the zone activated (αo > 0).

4 Results and Discussion

We simulate a robot swarm of size N in 2D open space environment. At the
beginning of a simulation, robots are placed within a confined box of the size
(Nρ )

1
2 with initial density ρ = 0.01. Within this box, both the robots’ positions

and moving directions are initially uniformly distributed. All simulations are
run with w = π

2 , v = 2, σ = 0.05, αr = 100, αo = 50, and αa = 1 based on
preliminary simulations to obtain a system of a single cluster. Unless varied, the
system size is N = 100.

We start with the metric model, looking at the swarm order Ψ , group rela-
tive coverage Ω, and the number of clusters (NoC). The emergence of the target
structures (i.e., HCLO, HCHO, and LCHO) is investigated using a combination
of these system measures. We enable the width of the orientation zone (ZoO) and
the attraction zone (ZoA) to vary over the range of [0− 100] in Figures 1A,B,C,
while keeping the width of the repulsion zone constant (ZoR = 1). Structures
that arise while the swarm is preserved in a single connected cluster (light-gray
color in Figure 1), have a low relative coverage and a high group order, which
corresponds to the target structure (LCHO). We note that the swarm splitting in
numerous clusters fits with the structure of high coverage and low order (HCLO)
(left-bottom corner). Finally, the high-coverage, high-order (HCHO) structure is
completely absent. The width of the repulsion zone (ZoR) and the orientation
zone (ZoO) are then varied throughout a range of [5− 30] and [0− 200], respec-
tively, while the width of the attraction zone remains constant (ZoA = 50). The
LCHO structure is formed when high order corresponds with low relative cover-
age, as seen in Figures 1D,E,F. However, given a medium level of order with a
possibility of more than one cluster, the right-bottom corner shows a likelihood
of a high coverage, low order (HCLO) to emerge. Finally, the high-coverage,
high-order (HCHO) structure is again absent.

Next, we perform an analysis of the long-range model. The results are shown
in Figure 2 for κ = 0.05 and κ = 0.9. Our results for κ = 0.05, in Figures 2A,B,C,
show that the swarm can move in a single cluster, while maintaining a low relative
coverage, and a high swarm order. This aligns with the structure of low coverage,
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Fig. 1. System measures of the metric model.

high order (LCHO). The other two structures of HCLO and HCHO are fully ab-
sent. In Figures 2D,E,F, we can notice an evidence of high relative coverage with
high order in the right-bottom corner (while maintaining a single cluster). This
corresponds to the structure of HCHO. The long-range model shows similarly
to the metric model the ability to generate low coverage, high order structures
(LCHO). The structure of high coverage, low order (HCLO) is missing. As the
average long-range connectivity κ increases, the long-range model’s ability to
create a high coverage, high order (HCHO) decreases, as demonstrated in Fig-
ure 2G-L. The low coverage, high order (LCHO) structure becomes the only
one that the long-range model can generate. Hence, the emergence of the high
coverage, high order (HCHO) is κ-dependent for the long-range model.

So far, we have demonstrated that while, both, the metric and the long-range
models are suitable to generate the low coverage, high order (LCHO) struc-
tures, they are not suitable for generating the other two structures (i.e., HCHO,
HCLO). In the following we show the system measures resulting from applying
the extended metric model (EMM). Figure 3 demonstrates how the EMM can
display the three target structures, while maintaining the group moving in a
single cluster for all structures (Figure 3 right column). Figures 3A,B show the
system measures when deactivating the orientation zone. Hence the values at
the y-axis define the distance at which the attraction zone starts. These two fig-
ures show the possibility to generate the HCLO structure through expanding the
swarm coverage while pushing the attraction zone away by increasing the width
of the deactivated orientation zone. Figures 3D,E are obtained after activating
the orientation zone. They show the ability of the EMM model to display, both,
the HCHO and the LCHO structures. The HCHO (LCHO) structure is achieved
by increasing (decreasing) the width of the activated orientation zone. Both re-
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Fig. 2. System measures of the long-range model with κ = 0.05 (first three columns)
and κ = 0.9 (last three columns).

sults in Figures 3A,B and in Figures 3D,E show that the emerging structure is
independent of the width of the repulsion zone (ZoR).

Next, we simulate a swarm of robots using the EMM model to perform the
following sequential set of tasks: (i) explore the environment looking for a par-
ticular stimulus (stimulus A) that define the direction they need to move into.
(ii) Navigate in the direction of stimulus A until a stimulus B appears. (iii) As a
response to stimulus B (e.g., a narrow path) the swarm needs to shrink in cover-
age while still navigating to its target. Figure 4(left) shows the system measures
recorded over 7×103 simulated time steps. The swarm order Ψ starts low as the
robots are initialized with random directions. Following the EMM model, every
robot deactivates its orientation zone, whose width is set to 200, aiming for the
HCLO structure. In a few time steps, the relative coverage increases to Ω = 3,
while the system maintains a low order. At time step 3×103, stimulus A (which
triggers the swarm to navigate into one direction) is introduced and perceived
by a single robot, who spreads the message to its neighbors. As the message
spreads, robots start activating their orientation zone (see Figure 3D,E). This
enables the swarm to converge to the HCHO structure after introducing stim-
ulus A, as shown in Figure 4(left). Thanks to activating the orientation zone,
fluctuations in both system measures disappear. Finally, at time step 4.5× 103

stimulus B is introduced and perceived by a single robot, who spread it further.
The system converges to the LCHO structure when informed robots reduce the
width of their orientation zone. (In this paper, we reduce ZoO to 50 based on
findings where we varied ZoO in [5 − 200]). Finally, Figure 4(right) shows that
the minimum width of the orientation zone, that is needed to create the HCLO
and the HCHO structures, scales linearly with the system size.

5 Conclusions

We studied in this paper the emergence of three target structures based on the
swarm order and relative coverage; HCLO, HCHO, and LCHO. These structures
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Fig. 3. System measures of the proposed model (EMM).

are fundamental for a large set of robot tasks such as exploration, navigation,
and moving through narrow paths. First, we demonstrated that even across a
wide range of parameter values, the widely-used metric model and the recently
proposed long-range model are unable to generate all three structures. We pro-
posed an extension of the metric model (EMM) that adapts the activation state
and width of the orientation zone to dynamically generate the three target struc-
tures. We showed that EMM displays each of the three structures in different
parameter ranges, and is capable of producing the required structure based on
different stimuli introduced in a dynamic environment scenario. We finally show
how our model parameter scales linearly with the system size.
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