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Abstract In collective foraging, interactions between conspecifics can be ex-
ploited to increase foraging efficiencies. Many collective systems exhibit short
interaction ranges, making information about patches rich in resources only
locally available. In environments wherein these patches are difficult to locate,
collective systems might exhibit altruistic traits that increase average resource
intake compared to non-interacting systems. In this work, we show that re-
source ephemerality and availability highly influence the benefits of altruistic
behavior. We study an agent-based model wherein foragers can recruit others
to feed on patches, instead of exploiting these individually. We show that the
net gain by recruiting conspecifics can be estimated, effectively reducing the
decision on patch detection to one based on a threshold. Patches with qualities
above this threshold are expected to increase foraging efficiencies and should
therefore induce recruiting of others. By letting foragers assume Lévy searches,
we show that recruitment strategies with contrasting diffusion characteristics
optimize conspecific encounter rates. Our results further indicate that active
recruitment is only beneficial when patches are scarce and persistent. Most
interestingly, the effect of choosing suboptimal threshold values is small over
a wide range of resource ephemeralities. This suggests that the decision of
whether to recruit others is more impactful than fine-tuning the recruitment
decision. Finally, we show that the advantages of active recruitment depend
greatly on both forager density and their interaction radius, as we observe
passive strategies to be more efficient, but only when forager densities or in-
teraction ranges are large.
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1 Introduction

Collectively foraging for resources is critical to the survival of many animal
species. In principle, foraging entails the entire process of searching for re-
sources whose locations within the environment are often unknown. To detect
these resources, foragers must resort to random searches. Whereas individual
random searches can be optimized over a wide range of environmental con-
straints (Viswanathan et al., 1999; Bartumeus et al., 2005; Wosniack et al.,
2015b; Zhao et al., 2015; Bartumeus et al., 2016), a collective system can po-
tentially exploit interactions to further increase the foraging efficiency (Pitcher
et al., 1982; Torney et al., 2009; Bhattacharya and Vicsek, 2014; Falcón-Cortés
et al., 2019; Nauta et al., 2020b). While the impact of foraging efficiency with
respect to survival is evident, collective foraging additionally provides an im-
portant source of inspiration for designing artificial systems (Winfield, 2009;
Rausch et al., 2020c). In general, collective systems rely on possibly intricate
communication patterns that are essential to spread information within the
system. This is a crucial aspect for the emergence of many types of collec-
tive dynamics, with applications ranging from understanding and controlling
epidemiology (Avin and Ercal, 2005; Pastor-Satorras et al., 2015) to sensor
networks (Akyildiz et al., 2002; Dall and Christensen, 2002; Dı́az et al., 2009;
Barthélemy, 2011). Identifying and understanding essential parts of the deci-
sion processes that underlie collective foraging, therefore, proves largely ben-
eficial for designing efficient artificial systems.

Many foraging environments contain ample resources distributed according
to fragmented, or patchy, distributions (Levin, 1976; Fauchald, 1999; Levin,
2000; Kéfi et al., 2007; Weimerskirch, 2007; With and Pavuk, 2011; Khaluf
et al., 2017). In such systems, locating the patches rich in resources is difficult
for individuals. Rather obviously, groups and collective systems can benefit
from interactions between conspecifics (Berdahl et al., 2013), effectively par-
allelizing the search (Cvikel et al., 2015). Then, for example, by joining suc-
cessful conspecifics, aggregations on salient patches can occur (Haney et al.,
1992; Jeanson et al., 2005; Eftimie et al., 2007; Olson et al., 2009; Ding et al.,
2019). However, when the number of foragers feeding on the patches increases,
foraging efficiencies might fall due to competition for resources on the patches
(Ranta et al., 1993). This on-patch competition introduces an important dis-
tinction between groups and collective systems. However, the terms used to de-
scribe these distinct systems are often used interchangeably (see e.g., Berdahl
et al., 2013; Bhattacharya and Vicsek, 2014, among others).

In particular, we argue that group (or social) foraging should describe
groups of foragers wherein individuals do not necessarily display behavior that
maximizes group foraging efficiencies. Instead, they often favor individually
optimal behavior, as hypothesized by the selfish herd hypothesis (Hamilton,
1971). Group foraging has been extensively studied using numerous decision
processes, interaction models, and resource landscapes (Barnard and Sibly,
1981; Ruxton et al., 1995; Beauchamp and Giraldeau, 1996; Giraldeau and
Beauchamp, 1999; Bhattacharya and Vicsek, 2014). While it has been observed
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that grouping provides individual advantages such as reduced predation risk
(Krause et al., 2002; Beauchamp, 2004; Ioannou et al., 2008) and reduced risk
of starvation (Clark and Mangel, 1984; Beauchamp, 2005), these advantages
do not necessarily translate to higher group foraging efficiencies (Monaghan
and Metcalfe, 1985; Rita and Ranta, 1998; Beauchamp, 2005, 2007; Svanbäck
and Bolnick, 2007). This indicates that it is important to distinguish between
individuals living in groups and individuals who are part of a collective, es-
pecially in the context of foraging. In contrast with groups, we argue that
collective systems should exhibit traits that aim to maximize collective bene-
fits. This effectively eliminates the on-patch resource competition encountered
in group foraging, as it is not a disadvantage that resources need to be shared.
As an effect, it allows individuals to instead favor behavior that is advanta-
geous for the collective, but importantly not necessarily advantageous for the
individual itself. Such behavior includes altruistic behavior that has been ob-
served in collective systems, such as active inhibition of visitation to exhausted
patches (Wendt et al., 2020), optimal task allocations (Von Frisch, 1967; Cerdá
et al., 2009; Landgraf et al., 2011), and (active) recruitment towards salient
patches (Detrain et al., 1999; Riley et al., 2005; Detrain and Deneubourg, 2008;
Dechaume-Moncharmont et al., 2005; Cerdá et al., 2009; Shaffer et al., 2013;
I’Anson Price and Grüter, 2015), the latter of which is studied in this work.

Obviously, the benefits of collective (altruistic) behavior depend strongly
on resource distribution. Static resource distributions wherein patch locations
and their respective qualities are known result in ideal free distributions that
optimize foraging efficiencies (Fretwell and Lucas, 1969; Rosenzweig, 1981).
However, patch locations and qualities are most often not known. In addition,
resource distributions are not static but possess potentially complex dynamics,
expressed by resource locations changing over time. Precise resource locations
are often tied to seasonality (Jonzén et al., 2004), other periodic changes (Calle
et al., 2016), or more complex resource dynamics, possibly leading to random
patch durations (Pulliam and Millikan, 1982). Additionally, resource consump-
tion, akin to destructive foraging (Raposo et al., 2003), in combination with
spatial characteristics of the resource distribution, can lead to ephemeral re-
source aggregations (Sims et al., 2008; Ferreira et al., 2012; Bhattacharya and
Vicsek, 2014).

Patchy and ephemeral resource landscapes imply that full global informa-
tion, e.g.,global knowledge about salient patch locations, is not necessarily
beneficial for a collective system (Mart́ınez-Garćıa et al., 2013). For example,
if the information on patches rich in resources is disseminated across vast dis-
tances, it is highly likely that these patches have already disappeared once
the information reaches eligible conspecifics. Moreover, when rapid decision
making is concerned, lower levels of connectivity are preferred (Franks et al.,
2003; Pirrone et al., 2014; Valentini et al., 2015). These types of collective sys-
tems have also been observed in swarming animals, where social interactions
were purposely limited to enhance collective responses (Gordon et al., 1993;
Ballerini et al., 2008; Attanasi et al., 2014; Mateo et al., 2017). Despite the
obvious disadvantages, highly connected systems that facilitate global infor-
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mation dissemination have been extensively studied in the context of group
and collective foraging (Bhattacharya and Vicsek, 2014; Lihoreau et al., 2017;
Falcón-Cortés et al., 2019). Additionally, previous work has studied the effect
of (static) topological networks, such as scale-free networks (Ramos-Fernández,
2005; Ramos-Fernández et al., 2009; Falcón-Cortés et al., 2019; Rausch et al.,
2019, 2020b). However, foraging systems with reduced information dissemi-
nation caused by short communication ranges have not been thoroughly dis-
cussed, although these limitations are encountered in many artificial collective
systems (Shklarsh et al., 2011; Brambilla et al., 2013; Hamann, 2018; Khaluf
et al., 2018; Rausch et al., 2020a).

In this work, we study collective foraging in patchy and ephemeral resource
landscapes, wherein foragers can only interact with conspecifics over relatively
short distances. We study altruistic systems with active recruitment, as for-
agers that have detected a patch can choose to recruit others over individu-
ally exploiting the resources on the patch. Such recruiting schemes have been
mostly observed in ants (Detrain et al., 1999; Detrain and Deneubourg, 2008;
Dechaume-Moncharmont et al., 2005; Cerdá et al., 2009; Shaffer et al., 2013)
and bees (Riley et al., 2005; I’Anson Price and Grüter, 2015) and embody the
underlying premise of a collective system: altruism. Note that since the indi-
vidual that detected the patch does not consume resources itself, recruitment
represents pure altruistic behavior. It carries similarities with resource sharing
(Rausch et al., 2020b), which, besides in swarming insects, has been observed
in social mammals such as primates (Winterhalder, 1996) and wolves (Mech
and Boitani, 2010). Obviously, and as we shall show, recruitment should only
be viable if the expected net gain of the collective is positive (Ruxton et al.,
2005). In other words, when patches are ephemeral, and the recruiter does not
encounter conspecifics before the patch disappears, it would have been better
– both at the individual and collective level – if it had individually exploited
the patch. Therefore, at patch detection, each forager needs to assess whether
the patch is of sufficient quality to deem recruiting others as efficient behavior.

To make this decision, we argue that each forager needs to be able to
estimate conspecific encounter rates. In this work, we show that under some
reasonable assumptions, encounter rates can be estimated by which individuals
can decide whether to recruit or not. When designing artificial systems, these
estimates can be given as prior information. More specifically, we shall show
that our model effectively describes a threshold foraging model (Piatt and
Methven, 1992; Giraldeau and Beauchamp, 1999; Ruxton et al., 2005), where
only patches above a certain threshold provide a positive gain by recruiting
others. Following observations from natural systems (Boyer et al., 2006), we
consider ephemeral resource landscapes wherein the patches containing re-
sources have durations sampled from an inverse power law (see section 2.1).
By studying different levels of resource ephemerality and resource availability,
we show that recruiting others increased collective foraging efficiencies, but
only if patches are both difficult to locate and persistent. Thus, our results
show that altruistic behavior can decrease foraging efficiencies when patches
are readily available or when patches persist over time scales shorter than those
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over which others can be recruited. Additionally, while we present a rudimen-
tary scaling analysis that reveals optimal choices of thresholds, we show that
precise computation of these thresholds is not necessary for altruistic behavior
to be beneficial. Interestingly, the choice of whether to recruit at all is a far
more important decision. Finally, we show that the benefits of recruitment de-
pend strongly on forager density and communication ranges. More specifically,
simple group strategies, which are not necessarily altruistic, can outperform
collective strategies when random conspecific encounter rates are high, which
occurs when forager density is high. This illustrates the complexity of the de-
cision process that individuals within a collective might undergo, as the most
efficient strategy can critically depend on the many variables present in the
system.

2 Model

2.1 Environment description

In this work, we model our environment as a two-dimensional area of dimen-
sion L×L with periodic boundaries. This design reflects environments that are
much larger than the individual and allows us to study the macroscopic proper-
ties of the collective in isolation of more invasive boundary effects. Within the
environment, we spatially distribute M patches uniformly. We couple patch
quality and patch duration by assuming that higher quality patches are avail-
able for longer times. This assumption is largely based on the fact that foragers
spend more time in high quality patches than in low quality ones (Charnov,
1976; McNair, 1982; Bonser et al., 1998; Wajnberg et al., 2000; Nonacs, 2001;
Watanabe et al., 2014), as foraging in patchy environments is often under-
stood as an evidence accumulation process (McNamara, 1982; Haccou et al.,
1991; Davidson and El Hady, 2019). We let the duration of a patch τ follow
an inverse power law with stable parameter γ as

p(τ) =

{
Aτ−γ tmin ≤ τ ≤ tmax,
0 otherwise,

(1)

where A = (γ − 1)/(t1−γmin − t1−γmax) a normalization constant. Note the lower
truncation at tmin that indicates patches exist at least for some period of
time. Since we are interested in realistic ephemeral landscapes, patches should
not be of extremely long (potentially infinite) duration, as ensured by the
upper truncation at tmax. These scale-free, inverse power law distributions
have been widely observed in natural systems (Johnson et al., 2004; Enquist
and Niklas, 2001; Niklas et al., 2003; Boyer et al., 2006; Sims et al., 2008). In the
asymptotic limit of tmax →∞, we have for γ → 1, that the patch distribution
is rather broad, implying that patches of almost all possible durations will
appear within the environment. In contrast, when γ increases the inverse power
law loses its heavy tail and converges to a normal distribution for γ ≥ 3. Most
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notably, for γ � 1, the environment consists of patches of duration tmin, since
the probability of patches of longer duration appearing becomes negligible
in practice. In order to preserve overall statistical properties of environments
patch density is kept constant throughout the experiments by respawning a
new patch at a random location each time a patch disappears (see below).

In this work, we assume patches to be of infinite capacity (but of finite dura-
tion) as to model an ephemeral landscape wherein short-term (over) consump-
tion does not deplete patches. While this assumption might appear counter-
intuitive, systems wherein (small) groups of individuals cannot fully exhaust
ephemeral patches are widespread (Pulliam and Millikan, 1982). Examples are
bats preying on insect swarms (Levin et al., 2013) or fish (Otálora-Ardila et al.,
2013; Egert-Berg et al., 2018), whales foraging on seasonally available krill
(Heide-Jørgensen et al., 2007; Laidre et al., 2010), birds feeding on vast swarms
of insects (Brown, 1988), and fish feeding on mobile prey (Baird et al., 1991).
Moreover, having (potentially) infinite patch density, but limited patch avail-
ability, effectively captures effects similar to patch exhaustion due to resource
consumption. It allows us to model ephemeral resource landscapes without
having to take into account short-term resource competition on the patches.

We should mention that the spatial distribution of resources (and sub-
sequently the patches wherein they reside) often follow fractal distributions
(Weimerskirch, 2007; Sims et al., 2008; Ferreira et al., 2012; Bhattacharya and
Vicsek, 2014), where intra-resource distances are distributed according to an
inverse power law as Eq. (1). However, fragmented environments wherein re-
sources are contained in uniformly distributed fixed size patches are observed
in natural systems (Beaver, 1977; Atkinson and Shorrocks, 1981) and subse-
quently extensively studied in the context of foraging (Boyer et al., 2006; Wos-
niack et al., 2015a,b; Falcón-Cortés et al., 2019; Nauta et al., 2020a). Since we
focus on large-scale systems, we can omit more complex, within-patch resource
distributions and dynamics by assuming that subsequent resource encounters
on patches take place on time scales smaller than considered time step sizes.
This assumption allows us to study the (dis)advantages of collective (altruis-
tic) behavior in isolation of other, possibly intrusive, effects. We consider more
detailed spatial resource distributions and dynamics to be out of the scope of
this work.

2.2 Individual behavior

We consider a homogeneous collective system of N foragers. Each individual
forager is able to detect patches within a detection radius R � L. Foragers
are able to observe patch duration (i.e. patch quality) instantaneously. They
can interact with conspecifics within an interaction radius r > R (but r � L,
see Appendix A). More specifically, we focus on interaction ranges below a
critical value r < rc as values above this critical value result in fully con-
nected communication networks. Fully connected networks enable formation
of global information whereas information is most often locally bound in col-
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lective systems (see Appendix A for a more detailed discussion). Additionally,
we consider foragers with constant velocities (see below).

We discretize time into steps of fixed size and start by uniformly distribut-
ing foragers and having them explore the environment using a Lévy walk. Lévy
walks have been extensively studied in foraging literature as recent advances
in data logging techniques highlight them as efficient random searches when
patches (or resources) are sparsely distributed (Viswanathan et al., 1996, 1999,
2011; Sims et al., 2008; Zaburdaev et al., 2015). Whereas robustness of Lévy
walks in a foraging context has been widely established (Raposo et al., 2003;
Ferreira et al., 2012; Wosniack et al., 2015a,b; Zhao et al., 2015), it is cur-
rently debated whether animals truly execute Lévy walks (Benhamou, 2007;
Edwards, 2011; James et al., 2011; Pyke, 2015). Despite the ongoing debate,
many empirical foraging studies have established the existence of Lévy walks
in natural systems (see e.g., Reynolds et al., 2007; Humphries et al., 2010;
Ariel et al., 2015).

Lévy walks are characterized by having flight lengths sampled from an
inverse power law with parameter α, i.e.

p(`) =

{
Z`−α `0 ≤ ` ≤ L,
0 otherwise,

(2)

where `0 is the minimum step size, L the environment size, and
Z = (α − 1)/(`1−α0 − L1−α) the normalization constant. Lower and upper
truncation ensure that displacements occur on spatial scales that are relevant
to the problem (Pyke, 2015). After sampling a flight length, foragers move
in a straight line, with fixed step size (velocity) `0, until its full length has
been traversed. The travel angle is randomly sampled between 0 and 2π. Note
that convergence of the above inverse power law towards a Gaussian process
is ultraslow, and hence the general characteristics of Lévy distributions are
conserved throughout the collective foraging process (Mantegna and Stanley,
1994).

In the limit L→∞, Lévy walks encompass several distinct modes depend-
ing on the Lévy parameter α. These modes characterize spatial displacement
and range from ballistic (straight line) motion for α → 1 to anomalous diffu-
sion for 1 < α < 3 and normal diffusion (Brownian motion) for α ≥ 3. As Lévy
walks encompass several distinct modes of diffusion, they serve as a useful tool
from a more practical perspective. Due to their simplicity and robustness for
maximizing foraging efficiencies in sparse resource landscapes they have been
applied extensively in artificial systems (see e.g., Sutantyo et al., 2013; Beal,
2015; Dimidov et al., 2016; Nauta et al., 2020b). For a more detailed descrip-
tion of Lévy walks and their characteristics we refer the interested reader to
more detailed descriptions (e.g., Viswanathan et al., 2011; Zaburdaev et al.,
2015).

While searching the environment, foragers can encounter both patches and
conspecifics. A rudimentary scaling analysis (Appendix B) shows that, in or-
der to maximize group search efficiencies, the decision at patch detection is
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equal to a threshold decision model (Piatt and Methven, 1992; Giraldeau and
Beauchamp, 1999; Ruxton et al., 2005). Thus, on encountering a patch, indi-
vidual foragers commence to recruit conspecifics when the (remaining) dura-
tion τ exceeds a threshold τc. Interestingly, heavy tailed patch distributions
drastically reduce the necessity for choosing optimal thresholds (see section
3.3). In other words, while individual decisions can follow a threshold model,
the binary decision whether to recruit or not is more impactful than following
a strategy with a precise threshold value.

Inspired by Bartumeus et al. (2008), we consider active recruitment to be a
random search as well, but for conspecifics instead of patches. We let recruit-
ing foragers additionally follow a Lévy walk, but with a different parameter
α′. Diffusion of individuals within our system of foragers will therefore be de-
scribed by a vector α = (α, α′), where α is the parameter for the random
search and α′ for the recruiting search. The goal of recruiting is to encounter
conspecifics and subsequently communicate the location of the previously de-
tected patch. Then, encountered conspecifics travel to the advocated patch
and proceed to feed on the resources residing on the patch. To facilitate this,
the recruiting forager has access to a simple, finite-length memory component
wherein the location and the duration (quality) of the patch are stored. Note
that memory formation occurs only at patch detection. The recruiting forager
effectively acts as an advocate for the patch and induces ephemeral aggrega-
tions of multiple foragers onto the patch. More specifically, since we consider
interaction radii larger than the patch detection range (r > R), recruiters ef-
fectively enlarge patch detection ranges such that others, that would otherwise
not be aware of the patch, can benefit.

In summary, individual foragers apply the following set of rules, given a
prior threshold τc:

(i) When detecting a patch, if τ > τc, try to recruit others by executing a
Lévy search with parameter α′. Recruiting stops when the time needed to
travel towards the advocated patch exceeds the remaining duration of the
patch.

(ii) When detecting a patch, but τ ≤ τc, stay and feed on the patch by con-
tinuously consuming resources with rate ε. Feeding stops when the patch
disappears.

(iii) When detecting a recruiting conspecific, travel towards the advocated
patch and, once on the patch, feed with rate ε until the patch disappears.

(iv) When neither a patch nor a recruiting conspecific is detected, continue the
Lévy search with parameter α.

(v) This rule pertains to the regeneration of patches once depleted. After the
duration τ of the patch has been expired, the patch is replaced by a new
patch at a random location and a new duration sampled from the inverse
power law with parameter γ (see Eq. (1)). Thus, the total number of avail-
able patches M remains fixed.

Note that once a patch has been detected, only the forager that first detected
it will try to recruit others. As a result, recruited foragers in (iii) proceed to
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Fig. 1 Conspecific encounter rates ζ for systems with a single recruiter and α = (α, α′).
Encounter rates are obtained for t = 500, i.e. in the short timescale 1 � t � L/`0 (see
text and Appendix B). Recall that α is the stable parameter for searchers and α′ of the
recruiter(s). (a) The encounter rate normalized by the total distance traversed L (see Eq.
(3)). (b) The encounter rate normalized by the displacement from the patch δ, i.e. ζδ = ne/δ
(see Eq. (B.12)).

feed on the patch and not subsequently start recruiting as well. While more
complex systems most likely do not display such binary modes of behavior, we
assume a more simplified model as to keep our numerical approach and the
accompanying scaling analysis tractable. Furthermore, information on patch
duration and location is forgotten after the patch has disappeared, thus mem-
ory duration, and subsequent recruiting behavior, has finite lengths. Finally,
while flights can be truncated upon both patch and conspecific detection, we
do not study (group) diffusion characteristics in this work. A more thorough
investigation in potential crowding effects, by additionally taking finite-size
effects into account, is warranted when one aims to implement our model in
more realistic artificial systems, or when studying different scales over which
foraging takes place.

3 Results

We study a system of N = 256 foragers in the L × L environment with
L = 1000. We consider equal step size and patch detection radius `0 = R = 1
and normalize consumption rate ε = 1. Interactions with conspecifics can oc-
cur when the distance is smaller than r = 0.0375L ≈ 1

2rc (Appendix A). While
the interaction radius and forager density influence the metrics that will be
presented, we found that general characteristics did not change when prop-
erly accounting for the number of foragers (but see the discussion on density-
related effects in section 3.4). Patch durations are distributed according to the
inverse power law with minimum duration tmin = 10 and maximum duration
tmax = L/`0 = 1000. While the minimum patch duration ensures patches ex-
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ist at least for some time that they can be detected, the maximum duration
is fixed at L/`0 as we assume patches for which recruiting distances can be
longer than the environment size unrealistic. Unless mentioned otherwise, we
compute statistical averages over 250 different foraging instances of duration
T = 105 steps.

3.1 Conspecific encounter rates

Let us first briefly discuss a non-interacting group of N foragers foraging in an
ephemeral landscape. This is achieved by considering both τc =∞ and r = 0.
Such systems define group foraging in a selfish system where foragers do not
take others into account. Patch distribution and patch ephemerality define a
destructive foraging instance for uniformly distributed targets for which it is
known that the optimal Lévy parameter αopt → 1 (Viswanathan et al., 1999;
Bartumeus et al., 2005; Ferreira et al., 2012). In other words, ballistic motion
provides the highest patch encounter rates and therefore the highest search
efficiencies.

When foragers are able to interact with conspecifics (τc ≤ tmax, r > 0)
we also expect the patch detection rate to be maximum for αopt → 1. Hence,
recruiters should aim to choose α′ to accommodate the highest possible en-
counter rates with conspecifics who execute Lévy walks with α→ 1. Previous
work on Lévy searches for dynamic targets who were executing Lévy walks
with a different parameter concluded that the most contrasting diffusion op-
timized search efficiencies (Bartumeus et al., 2008), i.e. α′opt ≥ 3 as α→ 1, or
vice versa. However, forager densities at which Bartumeus et al. (2008) stud-
ied the destructive foraging differs from our perspective. Here, we additionally
consider a different timescale as patches are of (relatively) short and finite du-
ration (T � tmax). Therefore, recruiters need to encounter conspecifics within
a relatively short time scale, which contrasts with the long time scale discussed
in Bartumeus et al. (2008). Finally, we study perception ranges for conspecifics
to be larger than detection ranges for patches (i.e., r > R), while these ranges
are equal in Bartumeus et al. (2008), as they focus on predator-prey type
relations between foragers and resources.

To study what parameters maximize the number of encounters we intro-
duce the conspecific encounter rate ζ as an analogue to the target search
efficiency (Viswanathan et al., 1999)

ζ =
ne
L , (3)

where ne is the number of unique conspecifics encountered within travel dis-
tance L. To study encounter rates in more detail, let us temporarily consider
a system of N foragers where only a single forager, the recruiter, is recruit-
ing conspecifics. Note that although forager density N heavily influences the
rate of conspecific encounters, we found overall characteristics to be similar
for different values of N (Appendix C). Results for systems with N = 256 are
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presented in Fig. 1a. We see that when α, α′ → 1, conspecific encounter rates
are maximized. However, one should be careful not to normalize by the travel
distance, as it is actually the displacement from the advocated patch δ that
is of importance. If recruiters can recruit others while remaining close to the
advocated patch, the efficiency of recruiting should be higher. The reason is
that encountered conspecifics need not travel long distances to arrive on the
patch and are therefore able to feed for longer. As seen in Fig. 1b, contrasting
strategies with α′ = 3 as α → 1 are maximizing encounter rates when nor-
malizing by the displacement (Appendix B). Importantly, encounter rates are
maximal when α → 1. This is desired as ballistic motion provided maximum
patch detection rates as well. Therefore, in following experiments, we study
systems with fixed α = (1.1, 3.0).

We would briefly like to mention the fact that, while we have studied Lévy
walks with stable parameters 1 ≤ α, α′ ≤ 3, the above results indicate that the
best strategies are those at the extremes of the studied parameter range. Recall
that in the asymptotic limit of L→∞, these values represent ballistic motion
for α→ 1 and Brownian motion for α′ = 3. Hence, one might argue why we do
not study ballistic searchers and Brownian recruiters in favor of more complex
Lévy searches with parameters α and α′. We argue that Lévy walks serve as an
extremely useful tool to study the influence of movement characteristics, as a
single parameter encompasses multiple distinct scales of movement (see section
2.2). Therefore, even though we encounter measures to be maximized at the
extremes of the studied parameter range, we deem it worthwhile to use Lévy
walks as the movement model. Finally, when spatial resource distributions
are non-uniform, intermediate values of α have been found to optimize Lévy
searches (Ferreira et al., 2012; Wosniack et al., 2015a,b). Hence using Lévy
walks as a prior movement strategy appears appropriate over a wide range of
systems, as it is both efficient and flexible.

3.2 Collective search efficiency

Next, we study collective foraging for homogeneous systems with τc ≥ 0 and
r > 0. Note that all foragers can start recruiting others when patch durations
exceed the threshold ensuring decentralized behavior typical of swarm systems
(Brambilla et al., 2013; Hamann, 2018). To study the foraging efficiency of the
collective system, we define the group search efficiency as the average foraging
efficiency of its members (Bhattacharya and Vicsek, 2014; Nauta et al., 2020b)

η =
1

N

∑
i

ki
Li
, (4)

with ki and Li the number of resources consumed respectively the total dis-
tance traversed by forager i.

Let us first discuss two contrasting systems, where one is comprised of
purely altruistic foragers with τc = 0 and the other a selfish system with
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Fig. 2 Group search efficiency η versus the stable parameter γ for different patch avail-
ability M . (a) Group search efficiencies for fully altruistic collective systems (τc = 0). Inset
displays group search efficiency for individual groups of (selfish) foragers (τc =∞). (b) Rel-
ative group search efficiency ηr = η(τc = 0)/η(τc = ∞). Points above the dashed line at
ηr = 1 depict environmental constraints wherein recruitment (altruistic behavior) results in
a positive gain in the group search efficiency. Points below the dashed line indicate environ-
ments wherein individual searches (selfish behavior) is preferred.

τc = ∞. Note that when τc = 0, all patch detections lead to recruiting be-
havior, whereas recruiting behavior is never induced for τc = ∞. We see in
Fig. 2 that both the number of patches M and the stable parameter of the
resource distribution γ heavily influence both the group search efficiency η
and the benefits of recruitment. Further inspection of the distributions over
individual search efficiencies ηi displays more details on the effects of γ on the
group search efficiency (Fig. 3).

As γ increases, group search efficiencies for both systems decrease regard-
less of the value of M . The reason is that resources become increasingly
ephemeral and as such the search for patches becomes increasingly difficult.
This is highlighted by noting that selfish systems with τc =∞ have low search
efficiencies as well. Thus, when patch encounters are already rare, a system of
collective foragers does not benefit from recruiting as patches are too short-
lived to effectively recruit others (Fig. 2a). As a result, the relative group
search efficiency decreases as γ increases from γ ≈ 3 onward (Fig. 2b). This ef-
fect is additionally observed in the individual distributions (Fig. 3). For low γ,
individual efficiencies for altruistic groups are distributed around means higher
than for selfish groups. High γ, in contrast, indicates systems wherein most
individuals consume little to no resources. This effect is exacerbated when M
is small (inset Fig. 3c).

Search efficiencies increase as γ decreases since patches of longer duration
become more readily available. Unsurprisingly, larger number of patches result
in higher search efficiencies for both selfish and altruistic systems. However,
when patches are less numerous, the benefits of recruiting others increase for
γ . 3. In this range of γ, lifetimes of some patches are relatively long due

2 Note that R2 here pertains to the statistical measure, not the square of the patch
detection radius R.
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Fig. 3 Probability density function P (ηi) of individual search efficiencies ηi = ki/Li for
different stable parameters γ and resource availabilities M . Empty markers and solid lines
indicate altruistic systems with τc = 0. Filled markers and dashed lines indicate selfish
systems with τc = ∞. Lines (both solid and dashed) are fitted log-normal distributions.
We found R2 > 0.98 for all fitted curves2(see Appendix D and Table D.1). (a) Density
for high resource persistence. (b) Density for intermediate resource persistence. Note that
distributions for τc = 0 and τc are do not differ significantly for all M , indicating ηr ≈ 1,
as expected from Fig. 2. (c) Density for low resource persistence. Inset displays details on
the (skewed) fitted log-normal distribution for γ = 5 and M = 256, 512.

to the dominance of heavy tails in the distribution. If patches are relatively
sparse, recruiting others to these rich patches becomes much more beneficial
as conspecifics are less likely to encounter patches by themselves. In contrast,
when M increases, we note that the relative search efficiency decreases as
γ → 1. The reason for this is twofold. First, due to a high number of available
resources, individuals are more likely to encounter patches by themselves, re-
ducing the number of ‘free’ foragers (Fig. 4a). Here, ‘free’ foragers are those
who are eligible to be recruited as they are not feeding, recruiting, or already
being attracted, i.e. those who are actively searching for patches. Hence, re-
cruiting instances are less likely to result in patch encounters by conspecifics
thereby decreasing the group search efficiency. This is additionally reflected
in Fig. 4b, as the number of conspecifics per recruit instance decreases as M
and γ increase. Second, for large M , the distance needed to travel towards
the advocated patch when a forager is being recruited approaches the mean
free path λ of the environment. Note that λ indicates the average distance be-
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Fig. 4 Effectiveness of recruiting behavior for an altruistic system (τc = 0). (a) Fraction of
the number of ‘free’ foragers N of the total population N at each recruit instance (see text).
(b) The effectiveness of recruiting as the total number of conspecifics recruited divided by
the total number of recruit instances. Inset displays the absolute number of recruit instances.
(c) Average distance needed to travel towards the patch upon being recruited ∆, normalized
by the mean free path λ = L2/2RM . Environments wherein ∆ < λ indicate (potential)
benefits of recruiting instances, whereas environments where ∆ & λ have individual searches
equal to more efficient than being recruited (see text).

tween subsequent patch encounters and decreases as M increases. If the travel
distance towards the advocated patch approaches (or exceeds) λ, it becomes
just as (or more) beneficial to search for patches individually, as is the case
for large M (Fig. 4c). As a result, altruistic group search efficiencies fall below
values of selfish groups.

3.3 Threshold decision making

Having established that recruitment is only beneficial when patches are sparse
and persistent, we would like to discuss effects of the threshold τc. Recall that
foragers only start recruiting others when the patch duration is higher than a
specific threshold τc (see section 2.2 and Appendix B). As visible in Fig. 5, the
effect of the threshold on the group search efficiency is not significant when
resource distributions are either fully dominated by the heavy tail (γ ≈ 1), or
when the heavy tail is suppressed (γ � 1).
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Fig. 5 The influence of the threshold τc on the group search efficiency η. Note that
τc = tmin = 10 corresponds to a fully altruistic system and τc = tmax = 1000 to a
selfish one. Results are obtained for M = 512, but similar results are obtained for other
values of M . Lines are a guide to the eye. (a) Normalized group search efficiency η versus
the threshold τc. Note the optimal value for γ = 3 at τc ≈ 100 (see text). (b) The standard
deviation of η. Standard deviation is largest when γ = 3 due to high variation in the resource
ephemerality.

In the former, decreases in search efficiencies become significant as τc ap-
proaches the maximum patch duration. The reason for this observation is that,
when γ ≈ 1, foragers will try to recruit others for (often occurring) patches
with long duration regardless. Hence, it does not matter if τc is much smaller,
and relatively large ephemeral aggregations still occur on these long duration
patches. Since these aggregations account for a large portion of the total group
search efficiency, the effect of τc on η is small as τc < tmax. Only when τc ap-
proaches tmax, foragers stop recruiting others to patches with long durations,
hence reducing the group search efficiency.

In contrast, for γ � 1, τc influences the search efficiency only when it ap-
proaches the minimum patch duration. In this regime, the heavy tails of the
inverse power law distribution are suppressed and extremely few patches with
durations τ � tmin are present in the environment. Hence, for γ = 5, we see
that when τc is sufficiently large to ensure recruiting behavior for (almost) all
encountered patches, the search efficiency becomes independent of τc. Interest-
ingly, recruiting does not provide a beneficial strategy in this regime anyways,
regardless of the choice of τc (Fig. 2).

More interesting dependence on τc is visible for distributions where the
heavy tail is suppressed, but only to some extent, i.e. for γ ≈ 3. Here, we
observe an optimal threshold at τc ≈ 100. Patch durations below this threshold
are of relatively small duration such that the expected number of conspecifics
encountered in that time is small (Fig. B.2). Hence, the collective is better
off by individually exploiting these patches, as trying to recruit others will
most likely lead to a negative gain. Patches above this threshold do provide
a net gain, which is why search efficiencies are maximized for this precise
choice of threshold. However, note that the variation of the search efficiency is
additionally maximized for these intermediate values of γ, because variation in
resource ephemerality is high when heavy tails are only partially suppressed.
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Fig. 6 Group search efficiencies for active and passive recruiters versus the normalized
interaction radius r/`0 for different forager numbers N . Results are obtained for M = 256
and γ = 1.1 in order to simulate environmental conditions under which recruitment is known
to be beneficial (see Fig. 2). (a) The group search efficiency η for active recruitment (with
α′ = 3). Inset shows the group search efficiency for passive recruitment (static recruiter).
(b) The relative efficiency as ηactive/ηpassive. Dashed line at 1 indicates the threshold and
individual dotted vertical lines indicate interaction radii r′ above which passive recruitment
becomes more efficient.

Finally, we would like to emphasize that precise (optimal) computation for
τc is not a necessity for the collective system to benefit from the described
altruistic behavior. As long as patches are difficult to locate (small M) and
persistent (γ . 3) does recruiting others results in an increase in group search
efficiencies. This has possible far-reaching implications for designing artificial
systems, as these results appear to indicate that prior beliefs do not determine
whether altruistic behavior is advantageous or not. Additionally, as priors for
more complex collective systems often difficult to estimate, our results seem to
imply that these are not necessary. While it might occur that more intricate
patch or forager dynamics necessitate more precise threshold approximations,
or even updating current beliefs as estimates deviate from their initial values
(Clark and Mangel, 1986; J. Valone, 2006; Marshall et al., 2013), we argue
that simply always trying to recruit others is an advantageous strategy given
that patches are persistent and interaction radii are small.

3.4 Effect of forager density on recruitment behavior

Finally, we would like to address the effect of forager density on the effec-
tiveness of active recruitment. While the above results consider systems that
actively recruit for conspecifics, searching conspecifics can be informed more
passively by having the recruiter remain on the patch while continuously an-
nouncing its location to passersby, here called passive recruitment. Increased
foraging efficiency of such a strategy is implied by noting that, when searching
for conspecifics, a recruiter should not stray far from the patch (see section
3.1 and Fig. 1). Note that these strategies effectively reduce the system to a
group foraging system (see our discussion in section 1), where foragers join
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successful nearby foragers that have detected a patch (as in, e.g., Beauchamp
and Giraldeau, 1996; Ruxton et al., 2005; Bhattacharya and Vicsek, 2014).

To appropriately compare active and passive recruitment strategies, let us
consider an environment with conditions such that altruistic systems (τ = 0)
outperform selfish systems (τ = ∞). Under these conditions, passive recruit-
ment outperforms active recruitment only when interaction radii are suffi-
ciently large, i.e. r > r′ (Fig. 6). Here, r′ is the interaction radius above which
passive recruitment results in higher foraging efficiencies than active recruit-
ment. As N increases and r > r′, (random) encounter rates increase, reducing
potential advantages of active recruitment. Furthermore, passively announc-
ing becomes more efficient due to weakly decreased encounter rate (Fig. B.3a)
and a decrease in total travel distance (Fig. C.4a). Indeed, our results indicate
that r′ is smaller for higher forager densities (Fig. 6b).

For r < r′, we find that active recruitment outperforms passive recruit-
ment due to increased recruit efficiencies (Fig. C.4c,d). Here, recruit efficien-
cies are computed by measuring the number of resources consumed by re-
cruited foragers, i.e. it acts as an indication of the remaining time upon patch
arrival. Hence, higher recruit efficiencies indicate that active recruitment re-
sults in conspecifics arriving earlier on the ephemeral patches, thus consuming
more resources per distance traveled when compared with passive recruitment
strategies. Moreover, for r small and approaching the patch detection radius
(r ≈ R), we find active recruitment to outperform passive recruitment sub-
stantially. The reason for this can be understood when considering that re-
cruitment effectively transforms the search for difficult to detect patches to a
search for more easily detectable conspecifics. Then, when interaction radii de-
crease, it becomes more difficult to detect searching foragers. In the limit where
r ≤ R, passive recruitment cannot be considered beneficial as it becomes more
likely (or just as likely for r = R) to encounter patches than conspecifics.
In contrast, active recruitment, while displaying decreased foraging efficien-
cies as r decreases (Fig. 6a), displays higher relative foraging efficiencies when
compared to passive recruitment. The reason is that the patch itself remains
exploitable, while the recruiter effectively simulates an additional patch detec-
tion opportunity with some radius r > R. In this regime, patch detection can
result from detecting the patch itself or by detecting the active recruiter, thus
increasing the patch detection probability significantly and leading to higher
relative foraging efficiencies.

We would like to emphasize that, while passive recruitment strategies
appear enticing due to increased foraging efficiencies for sufficient r > r′,
many collective systems exhibit small interaction radii. For example, honey-
bees recruit others by touch (Dornhaus and Chittka, 2004; von Frisch, 2013;
I’Anson Price and Grüter, 2015), i.e. r ≈ `0. Additionally, scalable collective
robot systems exhibit interaction radii that extend only several body lengths
(Rubenstein et al., 2012; Sutantyo et al., 2013; Hamann, 2018). Thus, despite
the simplicity of passive recruitment strategies, which one might desire over
more complex active recruitment strategies, the above results indicate that
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active recruitment is more likely to be advantageous for realistic collective
foraging systems with small interaction ranges.

These density related effects display that, while (active) recruitment can be
considered beneficial for the collective, the recruitment strategy itself should
critically depend on individual and collective variables, such as the interaction
radius and the forager density. Further investigation into optimal recruitment
strategies is considered to be a topic for future research.

4 Conclusion

In this work, we have studied a collective system capable of altruistic be-
havior. Foragers that detected patches could, instead of feeding individually,
decide to recruit others to increase the overall resource intake of the collec-
tive. We showed that by coupling patch quality and patch duration, recruiting
times of individuals could be estimated by performing a scaling analysis of
the underlying Lévy random search. Our analysis showed that this effectively
reduces the decision on patch detection to a threshold decision. Patch qualities
above this threshold are expected to have a positive net gain when actively
recruiting others. Indeed, our agent-based model displayed increased collec-
tive search efficiencies, but only when patch ephemerality was not too high
and patches were difficult to locate. Moreover, we showed that the influence
of the threshold is small compared to the decision of whether to recruit or
not. Only when patch ephemerality was intermediate, i.e. when high qual-
ity patches appeared sporadically, did a more fine-tuned threshold resulted in
higher collective foraging efficiencies. However, increases in search efficiencies
were relatively small. Therefore, always recruiting remained a valid strategy
that resulted in increased group search efficiencies, potentially alleviating the
necessity for individuals to determine optimal thresholds.

We considered patch quality (duration) to be instantaneously available and
an objective measure identical for all individuals. Realistically, this assump-
tion does not necessarily hold since patch quality can be subjective or change
over time depending on the needs of the individual or the collective (Torney
et al., 2011; De Fine Licht and Boomsma, 2010; Lihoreau et al., 2017). Ad-
ditionally, satiation might influence individual decisions, as individuals tend
to change behavior based on their internal state (Schadegg and Herberholz,
2017; Landayan et al., 2018). Thus, while including yet more crucial pieces of
natural foraging behavior into a model might prove difficult, it is critical to
understand the decision process that members of a collective undergo.

Furthermore, in this work, we assumed that individuals were only able
to communicate over short distances. While we argued that information being
only locally available is not necessarily detrimental, studies on natural systems
have found that animals can transfer information across potentially large dis-
tances (Ramos-Fernández, 2005; McComb et al., 2003; Frey and Gebler, 2003;
Mart́ınez-Garćıa et al., 2013; Carlson et al., 2020) or form ephemeral groups
that can lead to vastly different communication networks (Pinter-Wollman
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et al., 2014), such as topological distances (Ballerini et al., 2008; Mateo et al.,
2019) or scale-free networks (Falcón-Cortés et al., 2019; Ramos-Fernández
et al., 2009; Rausch et al., 2019). Further investigation into the ranges over
which collective systems can communicate, and the effect on decision processes,
should therefore be considered.

Additionally, as mentioned previously, nest formation can circumvent the
lack of long communication ranges as widely observed in swarming insects
such as ants (Pinter-Wollman et al., 2013) and bees (Visscher, 2007). Such
systems, studied as central place foraging, consider individuals that return to
a single nesting site after successful foraging in order to communicate with
others. This type of foraging has been observed across a wide range of ani-
mal species (Andersson, 1981; Rosenberg and McKelvey, 1999; Campos et al.,
2014; Rozen-Rechels et al., 2015). This work studies a system where the spa-
tial forager distribution is essentially uniform and only results in higher forager
densities when ephemeral aggregations form on the patches. Although known
that spatiality affects decision making (Reina et al., 2018), how exactly dif-
ferent behavior can induce more efficient spatial distributions is not yet fully
understood. Nonetheless, we believe that the model presented here may help
the design of more efficient artificial systems, as well as potentially help to
explain empirical data on collective foraging.
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Superdiffusion and encounter rates in diluted, low dimensional worlds. The
European Physical Journal Special Topics 157(1):157–166, DOI https://doi.
org/10.1140/epjst/e2008-00638-6

Bartumeus F, Campos D, Ryu WS, Lloret-Cabot R, Méndez V, Catalan J
(2016) Foraging success under uncertainty: search tradeoffs and optimal
space use. Ecology letters 19(11):1299–1313, DOI https://doi.org/10.1111/
ele.12660

Beal J (2015) Superdiffusive dispersion and mixing of swarms. ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS) 10(2):1–24, DOI
https://doi.org/10.1145/2700322

Beauchamp G (2004) Reduced flocking by birds on islands with relaxed pre-
dation. Proceedings of the Royal Society of London Series B: Biological Sci-
ences 271(1543):1039–1042, DOI https://doi.org/10.1098/rspb.2004.2703

Beauchamp G (2005) Does group foraging promote efficient exploitation of
resources? Oikos 111(2):403–407, DOI https://doi.org/10.1111/j.0030-1299.
2005.14136.x

Beauchamp G (2007) Effect of group size on feeding rate when patches
are exhaustible. Ethology 113(1):57–61, DOI https://doi.org/10.1111/j.
1439-0310.2006.01294.x

Beauchamp G, Giraldeau LA (1996) Group foraging revisited: information
sharing or producer-scrounger game? The American Naturalist 148(4):738–
743, DOI https://doi.org/10.1086/285951

Beaver R (1977) Non-equilibrium ‘island’ communities: Diptera breeding in
dead snails. The Journal of Animal Ecology pp 783–798, DOI https://doi.
org/10.2307/4209



Resource ephemerality influences effectiveness of altruistic behavior in foraging 21

Benhamou S (2007) How many animals really do the Lévy walk? Ecology
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ley HE (1996) Lévy flight search patterns of wandering albatrosses. Nature
381(6581):413–415, DOI https://doi.org/10.1038/381413a0

Viswanathan GM, Buldyrev SV, Havlin S, Da Luz M, Raposo E, Stanley HE
(1999) Optimizing the success of random searches. Nature 401(6756):911,
DOI https://doi.org/10.1038/44831

Viswanathan GM, Da Luz MG, Raposo EP, Stanley HE (2011) The
physics of foraging: an introduction to random searches and biologi-
cal encounters. Cambridge University Press, DOI https://doi.org/10.1017/
CBO9780511902680

Von Frisch K (1967) The dance language and orientation of bees. Harvard
University Press, DOI https://doi.org/10.4159/harvard.9780674418776

Wajnberg E, Fauvergue X, Pons O (2000) Patch leaving decision rules and the
marginal value theorem: an experimental analysis and a simulation model.
Behavioral Ecology 11(6):577–586, DOI https://doi.org/10.1093/beheco/11.
6.577

Watanabe YY, Ito M, Takahashi A (2014) Testing optimal foraging theory
in a penguin–krill system. Proceedings of the Royal Society B: Biological
Sciences 281(1779):20132376, DOI https://doi.org/10.1098/rspb.2013.2376



30 J. Nauta, et al.

Weimerskirch H (2007) Are seabirds foraging for unpredictable resources?
Deep Sea Research Part II: Topical Studies in Oceanography 54(3):211 –
223, DOI https://doi.org/10.1016/j.dsr2.2006.11.013

Wendt S, Kleinhoelting N, Czaczkes TJ (2020) Negative feedback: ants choose
unoccupied over occupied food sources and lay more pheromone to them.
Journal of the Royal Society Interface 17(163):20190661, DOI https://doi.
org/10.1098/rsif.2019.0661

Winfield AF (2009) Foraging robots. In: Encyclopedia of Complex-
ity and Systems Science, pp 3682–3700, DOI https://doi.org/10.1007/
978-0-387-30440-3 217

Winterhalder B (1996) Social foraging and the behavioral ecology of intragroup
resource transfers. Evolutionary Anthropology: Issues, News, and Reviews:
Issues, News, and Reviews 5(2):46–57, DOI https://doi.org/10.1002/(SICI)
1520-6505(1996)5:2%3C46::AID-EVAN4%3E3.0.CO;2-U

With KA, Pavuk DM (2011) Habitat area trumps fragmentation effects
on arthropods in an experimental landscape system. Landscape ecology
26(7):1035–1048, DOI https://doi.org/10.1007/s10980-011-9627-x

Wosniack M, Raposo E, Viswanathan G, da Luz M (2015a) Efficient search
of multiple types of targets. Physical Review E 92(6):062135, DOI https:
//doi.org/10.1103/PhysRevE.92.062135

Wosniack ME, Santos MC, Raposo EP, Viswanathan GM, da Luz MGE
(2015b) Robustness of optimal random searches in fragmented environ-
ments. Phys Rev E 91:052119, DOI https://doi.org/10.1103/PhysRevE.91.
052119

Zaburdaev V, Denisov S, Klafter J (2015) Lévy walks. Reviews of Modern
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Appendix A The interaction graph

Here, we aim to get an understanding of the effect of the interaction radius
r on the macroscopic behavior of the collective system. Possible interactions
between individuals, and thereby their collective behavior, are fully charac-
terized by the resulting proximity graph given this interaction radius. In this
interaction graph interpretation, each individual represents a vertex where
edges between vertices denote interaction and only exist when the distance
between two vertices is smaller than r. The foragers’ positions define a ran-
dom geometric graph albeit that the distribution over time is not necessarily
uniform due to the ephemeral aggregations on patches. Below, we illustrate
that an initial uniform distribution makes certain values of the interaction
radius uninteresting to (artificial) collective system studies.

Let us consider a uniform distribution of vertices (forager positions). For-
mally, one can define the connectivity (or degree) of a random geometric graph
as the average number of connections per vertex:

κ = 2E/N, (A.1)

where E is the number of edges within the graph. Let us furthermore define
the size of the giant component to be NG(κ), where G indicates the fraction of
vertices present in the giant component. It is known that there exists a critical
connectivity κc for which, in the limit of N →∞, we have that G→ 1 for any
κ > κc (Dall and Christensen, 2002). In two-dimensional systems, the value
of κc can be numerically computed to be κc ≈ 4.5. Even though this behavior
formally only holds in the limit of N → ∞, the phase transition is apparent
even at relatively small N (Fig. A.1).

In this work, individual foragers can be thought of as circles within the
environment, each occupying an area of V = πr2, which is related to the
connectivity through

κ = NV. (A.2)

From these equations, we can express the interaction radius in terms of the
connectivity

r

L
=

√
κ

πN
, (A.3)

where we have substituted r ← r/L to express the interaction radius in terms
of the environment size L. From this equation, we can immediately compute
the critical radius by simply substituting κ = κc, and can therefore extract a
critical interaction radius rc above which the network has a giant component
containing all individuals.

When the communication network is fully connected, information (e.g. on
patch locations) is not locally bound. Therefore, a fully connected network
can be assumed to posses global information properties. This regime is out of
our current interest, since both natural systems and artificial systems do not
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Fig. A.1 Numerically computed connectivity κ and giant component parameter G for dif-
ferent vertex numbers N . (a) The normalized connectivity of the resulting random geometric
graphs. Note that all vertex numbers collapse onto the same value where κ/N = π(r/L)2 as
per Eq. (A.2). (b) The resulting giant component parameter G as a function of the normal-
ized interaction radius. Dotted vertical lines correspond to the critical radius defined by Eq.
(A.1). (c) The same giant component parameter expressed in terms of the connectivity. Note
the collapse of the distinct vertex numbers onto the same curve for which any κ > κc ≈ 4.5
the resulting giant component contains all vertices. In all plots error bars represent 1 s.d.
computed over 1000 separate random geometric graphs.

possess global information, but instead rely on locally available information to
base their decisions on (see e.g., Brambilla et al., 2013; Hamann, 2018). There-
fore, we focus solely on systems with interaction radii r < rc. In particular,
we choose r = 1

2rc ≈ 0.0375L (see section 3).

Appendix B Optimal recruitment for Lévy searchers

Below, we perform a scaling analysis and show that the decision to recruit upon
patch detection is a threshold decision where patches with qualities above the
threshold result in an expected positive gain and should therefore encourage
recruiting. We shall show that the threshold depends on both the forager
density, the movement of others, and the range at which foragers can perceive
one another.

Let us consider a system of N foragers where one of the foragers detects a
patch at time t0. Without loss of generality, we set t0 = 0, and the forager has
to decide whether to recruit others or exploit the patch individually. Since we
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consider collective foraging in this study, we assume that successful foragers
only start recruiting if the expected net gain by recruiting is positive. Recall
(see section 2.1) that the quality of the patch is defined by its (remaining)
duration τ . Then, assuming a fixed consumption rate ε, we define the net gain
g as the difference between individual exploitation and the expected intake
rate by recruiting conspecifics:

g = −gexploit + grecruit

= −ετ + ε

∫ τ

0

n(t,α)dt, (B.4)

where n(t,α) is the expected (average) number of conspecifics feeding on the
detected patch at time t > 0. Note the dependence on the vector α = (α, α′),
where α and α′ the Lévy parameters of the searchers respectively the re-
cruiter(s) (see section 3.1). The first term in Eq. (B.4) is simply the resource
intake for a single forager feeding on the patch. The second term describes the
expected number of resources consumed (by others) over the remaining time
before the patch disappears. We can rewrite this term by considering the fact
that only conspecific encounters up to some time s(τ) are ‘successful’ encoun-
ters, wherein the recruited forager has enough time to still feed on the patch.
Thus we find that

grecruit = ε

∫ s(τ,α′)

0

n(t,α)dt, (B.5)

where s(τ, α′) depends on the distance the focal forager displaces itself from
the detected patch. We would like to emphasize that, for estimating n(t,α),
one not only needs to consider the expected encounter rate with conspecifics,
but also the expected displacement from the patch for the recruiter (section
3.1).

B.1 Scaling analysis

The expected time over which the message on the patch location should be
disseminated depends on both the remaining time τ and the Lévy param-
eter of the recruitment search α′. If we consider the focal forager having a
displacement δ(t, α′) after some time t < τ , we find that

s(τ) = τ − δ(t, α′)/`0, (B.6)

where `0 (the step size) the constant velocity of the forager. When assuming
time scales are relatively short, i.e. 1 � t � L/`0, we know that the spatial
moments of the Lévy walk scale as3 (Nakao, 2000; Vahabi et al., 2013)

〈
|x|k(t)

〉
'


tk/(α−1), 1 < α < 3 and 0 < k < α− 1,

t, 1 < α < 2 and k ≥ α− 1,

tk/2, α = 3 and k > 0

(B.7)

3 note that here α depicts the stable parameter for any Lévy search
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Fig. B.2 Scaling analysis of the conspecific encounter efficiency. The appropriate scaling
is valid in the asymptotic limit 1� t� L/`0 (see text). (a) The displacement δ(t, α) from
a patch detected at t = 0 for different stable recruitment parameters α. (b) The number of
conspecifics encountered ne within a time t for α = (α, α′). Here, searchers execute ballistic
motion with α = 1.1 and recruiters walk with Lévy parameter α′ = 3 (see text and section
2.2). We find ne ' t for all values of α, α′ that we studied. (c) The conspecific search efficiency
ζ = ne/`0t ' t−1 (see text). (d) The normalized conspecific search efficiency ζδ = ne/δ. In
all figures, dashed lines are fits obtained with non-linear least squares analysis. Scaling of
the quantities with time is indicated. Results are obtained by averaging over 250 realizations
of an appropriately sized system with L = 1000, N = 256, `0 = 1 and r = 0.0375L (see
section 3).

Note that the appropriate timescale wherein the above results hold are appli-
cable to ephemeral landscapes, assuming patch duration is finite and truncated
(see section 2.1). One recovers the expected displacement with α′ for k = 1,

δ(t, α′) = 〈|x|(t)〉 '


t1/(α

′−1), 2 < α′ < 3,

t, 1 < α′ ≤ 2,

t1/2, α′ ≥ 3

(B.8)

We find our results to match this type of scaling (Fig. B.2a).

The expected number of conspecifics feeding at the patch due to having
been recruited can be estimated as

n(t,α) ' ne(t− δ(t, α′)/`0,α), 0 < t < s(τ, α′) (B.9)
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Fig. B.3 (a) The number of recruited conspecifics feeding on the patch at time t for differ-
ent Lévy parameters α′ and passive recruitment (static recruiter, see section 3.4). Dashed
lines are linear fits obtained with non-linear least squares analysis. Averages are obtained
over 250 realizations. (b) The expected number of conspecifics feeding on the patch due
to having been recruited, n(t,α), as a function of α = (α, α′) with fixed α = 1.1. Differ-
ent colors indicate different forager densities, as the number of available foragers depends
greatly on the patch distribution (Fig. 4). Dotted lines indicate passive recruiters, effec-
tively approximating group-like foraging (see section 3.4). Note that for α′ & 3 the number
of foragers feeding on the patch displays a plateau due to the Lévy walk asymptotically
converging to Brownian motion as per the central limit theorem. Averages are obtained
over 1000 realizations for t = 500. Lines are a guide to the eye.

where ne(t,α) is the expected number of conspecifics encountered within some
time t. In other words, the number of foragers feeding on the patch at time t,
is approximately equal to the number of encountered foragers at time t − t′,
with t′ = δ(t, α′)/`0 the time needed to travel to the patch from distance
δ(t, α′). Estimating the number of conspecific encounters requires one to es-
timate search efficiencies for other Lévy searchers, which to the best of our
knowledge has not been done analytically. Numerical simulations reveal lin-
ear scaling ne ' t for all values of α that we have studied (Fig. B.2b), and
subsequently n ' t (Fig. B.3a). A more thorough analytical scaling analysis is
considered to be out of scope of this work.

Having established how conspecific encounter rates scale, let us consider
the conspecific search efficiency (see section 3.2)

ζ(t,α) =
ne(t,α)

`0t
(B.10)

as the number of conspecifics found per distance traveled. It acts as a primer
for the choice of α′, i.e. what kind of diffusion should a forager that aims to
maximize the number of conspecifics encountered within the remaining patch
duration τ . As is known (see e.g.,Viswanathan et al., 1999; Bartumeus et al.,
2005), ballistic motion for α∗ → 1 maximizes the search efficiency in ephemeral
landscapes where patch locations are uniform. When assuming the remainder
of the collective is executing a Lévy search with α∗, we find that a parameter
leading to contrasting diffusion, i.e. α′ ≥ 3, optimizes search efficiencies for
conspecifics in the short timescale (Fig. 1). Using this and the above scaling
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analysis for the displacement and expected number of encountered conspecifics,
we find ζ(t,α) ' t−1 (Fig. B.2c).

However, recall that we are not interested in the number of conspecifics
encountered per distance traveled, rather as a function of the displacement
from the patch, i.e.

ζδ =
ne(t,α)

δ(α′)
. (B.11)

The reason being that recruiting conspecifics while close to the advocated
patch results in faster exploitation rates, because recruited foragers arrive at
the patch earlier. Since we know the displacement scales as δ ' t1/(α

′−1) for
α′ > 2 (Eq. (B.8)), and encounters as ne ' t, we find the properly normalized
conspecific search efficiency scales as

ζδ(t,α
∗) ' t1/2, (B.12)

where α∗ = (1.1, 3.0). In contrast, values of α′ < 2 result in linear scaling of
the displacement, δ ' t, hence ζδ(t,α) ' const., i.e. the normalized conspecific
search efficiency approaches a constant value as t increases. Our numerical
results indeed verify this behavior, as can be seen in Fig. B.2c,d.

The difference in scaling for α′ ≤ 2 and α′ > 2 explains why the conspe-
cific search efficiency is maximized with contrasting diffusion characteristics
(α′ ≥ 3 as α→ 1). While for α′ ≤ 2 the rate of new conspecific encounters ap-
proaches a constant value, it grows with t1/(α

′−1) when α′ > 2, hence resulting
in increased ζ (Fig. 1b and Fig. B.2d). It additionally raises the question if
different strategies, such as simply announcing while remaining on the patch
(i.e., δ = 0), might be more efficient. We compare active recruitment via Lévy
walks with a passive strategy in section 3.4 and below in Appendix C.

B.2 Threshold decision making

Here, we wish to illustrate that the foragers can be equipped with an effective
threshold for which patches with qualities above this threshold should have an
expected positive net gain and thus should trigger (active) recruitment. As a
result, our model effectively resembles a threshold model, where recruiting oth-
ers occurs only when the forager expects the collective to benefit (see section
2.2). Recall that we assume that foragers can estimate the optimal recruiting
time s(τ, α′) for a given patch duration τ by estimating its displacement fol-
lowing the above scaling analysis. As the coefficients of both the displacement
and the number of conspecifics encountered can be numerically computed, we
can pre-compute s(τ, α′) from Eq. (B.6) and Eq. (B.8), and subsequently the
expected net gain from Eq. (B.4), s(τ, α′) and Eq. (B.9). Since n(t,α) ' t, we
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can write n(t,α) = d1t+ d2. Then net gain g becomes

g = −ετ + ε

∫ s(τ,α)

0

n(t,α)dt

= ε

(
1

2
d1s

2(τ, α) + d2s(τ, α)− τ
)
, (B.13)

where we have simply integrated the linear approximation of n(t,α). By deter-
mining the coefficients, which in artificial systems can be computed beforehand
(i.e. be assumed prior knowledge to the forager), one can find critical dura-
tions for which g(τc) = 0, τc > 0. Existing numerical schemes, such as the
Newton-Raphson method, can be applied to find these roots.

Then, at patch detection, foragers should recruit when τ > τc and exploit
individually when τ ≤ τc. Therefore, advantages of collective behavior depend
heavily on the distribution over patch durations (see section 3.2). The thresh-
old τc ensures that foragers are not recruiting others towards patches that are
not worth the effort and therefore serve as a filter on the individual level. In
turn, thresholds greatly simplify decisions of recruited foragers, since instead
of a (potentially complex) decision they should simply always travel towards
the advocated patch.

We would like to emphasize that our results (see section 3.3 and Fig. 5)
appear to indicate that the specific choice of threshold does not significantly
influence the resulting group search efficiency. This is possibly an artifact of
the ephemeral patch distribution that we study here. Hence, different patch
distributions might result in more precise estimations of τc to be far more
beneficial for recruiting foragers than the one studied in this work.

Appendix C Density effects

Forager density affects patch encounter rates and subsequently the number of
recruit instances. As a result, passive strategies can become more beneficial (in-
crease foraging efficiency) as interaction radii increase (section 3.4). Note that,
despite the apparent increase in foraging efficiency, active recruitment result
in more conspecific encounters than passive recruitment (Fig. B.3). Therefore,
we compare active and passive recruitment in more detail to investigate when
passive recruitment might be more efficient.

To this end, we study a system of N foragers in environmental conditions
wherein altruistic recruitment (τ = 0) outperforms selfish systems (τ = ∞).
This is realized for persistent patches (γ = 1.1) and low patch densities
(M = 256), as indicated in Fig. 2. In such environments, we observe that total
travel distances are lower for passive recruitment, as the passive recruiter is
always on the patch (δ = 0). In contrast, active recruiters increase the distance
towards the patch (as δ ∝ t1/2, see section B and Fig. B.2) and thereby in-
creasing distances towards the patch upon recruitment. Note that total travel
distances increase with the interaction radius as expected. The (small) de-
crease for high forager densities as r increases results from the approximately
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Fig. C.4 Comparison of the effect of forager density on the effectiveness and efficiency
of recruitment between active and passive recruitment strategies. Results are obtained for
M = 256 and γ = 1.1 in order to simulate environmental conditions under which recruit-
ment is known to be beneficial (see text and Fig. 2). Solid lines indicate active recruitment
with Lévy walks with α′ = 3 for searching foragers with α = 1.1. Dashed lines in (b) and (c)
indicate passive recruitment. (a) Total relative travel distance, computed by dividing total
travel distance L =

∑
i Li for active recruitment by total travel distance for passive recruit-

ment. Note that relative travel distance is always greater than 1, indicating that passive
recruitment carries lower total travel distances (see text). (b) The recruit effectiveness as
the total number of conspecifics recruited divided by the total number of recruit instances.
(c) The recruit efficiency as the total number of resources consumed divided by the travel
distance (see text and section 3.4). (d) The relative recruit efficiency as the recruit effi-
ciency of active recruitment divided by the recruit efficiency of passive recruitment. Dotted
vertical lines indicate interaction radii above which passive recruitment has higher recruit
efficiencies than active recruitment. Note that interaction radii for which this occurs are
(approximately) equal to those where the forager efficiency indicates similar effects (Fig. 6).

uniform forager distribution on patch detection, leading to instantaneous at-
traction at distances shorter than r. This induces an overall reduction in the
total travel distance.

While larger distances towards the patch seem counter-productive, as the
search efficiency is inversely related to the travel distance (Eq. (4)), simulations
reveal that foraging efficiencies are higher when actively recruiting, but only
when interaction radii are sufficiently small (Fig. 6). The reason is twofold.
First, the recruit effectiveness is larger for active recruitment (Fig. C.4b) as
the encounter probability is higher for active recruiters than passive recruiters
(Fig. B.3a). Second, for sufficiently small interaction radii, the recruit effi-
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ciency is larger when actively recruiting conspecifics. The recruit efficiency is
computed by the number of resources consumed after being recruited, divided
by the total distance traveled, and is shown in Fig. C.4c,d. When actively
recruiting, conspecifics arrive on ephemeral patches earlier than when pas-
sively recruiting, thus increasing the total number of resources consumed on
the patch before it disappears (see also section 3.4).

The benefits of active recruitment depend strongly on the forager density
and their interaction radius, because, when interaction radii are sufficiently
large, advantages of active recruitment disappear. Travel distances in systems
with passive recruitment decrease, due to the recruiter not moving and de-
creased distances towards the patch upon being recruited (Fig. C.4a), hence
increasing the foraging efficiency. This effect is amplified when forager densities
are high, resulting in active recruitment being only beneficial when interac-
tion radii are smaller than several body lengths (see Fig. 6b, Fig. C.4d and
our discussion in section 3.4).

Appendix D Distribution over individual search efficiencies

To measure distributions over individual search efficiencies presented in Fig.
3, we numerically compute histograms by computing search efficiencies for
each individual forager and attributing them to 50 logarithmically spaced bins
between ηi = 0 and ηi = ηmax. Here, ηmax is the greatest measured individual
foraging efficiency encountered during our simulations for a specific parameter
setting and can be empirically determined.

For generating the fits of the individual search efficiencies in Fig. 3, we
use non-linear least squares to fit a log-normal distribution to the empirically
obtained histograms using the SciPy Python package (Virtanen et al., 2020).
To measure the statistical accuracy of the fitted curves, we compute the coef-
ficient of determination R2, and found R2 > 0.98 for all curves shown in Fig.
3 (Table D.1).

γ = 1.1 γ = 3 γ = 5

M R2
τ=0 R2

τ=∞ M R2
τ=0 R2

τ=∞ M R2
τ=0 R2

τ=∞

256 0.996 0.999 256 0.999 0.986 256 0.998 0.998
512 0.998 0.999 512 0.999 0.993 512 0.999 0.992
1024 0.999 0.999 1024 0.999 0.996 1024 0.999 0.998
2048 0.999 0.999 2048 0.999 0.998 2048 0.999 0.999
4096 0.999 0.999 4096 0.999 0.999 4096 0.999 0.999

Table D.1 R2 values for fitted log-normal distribution shown in Fig. 3 for all shown
values of γ and M . R2

τ=0 corresponds to altruistic (collective) systems that always recruit
and R2

τ=∞ are for selfish (group) systems without interaction (see section 3.2).
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