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Abstract— Despite already being commonplace, delegation to
robotic virtual agents (VAs) is often considered challenging
and error-prone in critical situations by the general public.
Theory of mind, the human capacity to take another person’s
perspective, is deemed an important enabler for human-human
cooperation. This study explores the effect of a robotic VA’s
ability to use theory of mind on users’ delegation behavior.
To this end, we conducted a between-subjects experiment with
participants playing the Colored Trails game with robotic VAs
of varying levels of theory of mind. The results invalidate our
hypothesis that the ToM level is a reliable indicator of delegation
choices. Instead, we found that the participants’ performance
strongly correlates with their delegatory intentions. Therefore,
to facilitate delegation, designers of robots and robotic agents
may consider refraining from using ToM-resemblance features
and focusing on balancing user performance perception instead
to induce the desired delegation behaviors.

I. INTRODUCTION

Virtual agents (VAs) have been rapidly developing over
the past decades, and robotic representations are com-
monplace to suggest their intelligence, obedience, and –if
anthropomorphized– human-likeness. Such VAs are increas-
ingly deployed in real-world scenarios such as customer
service. With their growing acceptance, robotic VAs are
also the subject of extensive research, with results not only
informing robotic VA designs but also having implications
for physical robot design. Many robots in the broader sense,
i.e., including autonomous vehicles or self-driving cars, are
first tested virtually with users in a simulated environment
before being built or deployed into real-world scenarios.

Combined with AI technologies, VAs can outperform
human experts at, for instance, diagnosing tumors [1] or
making strategic decisions [2]. The potentially superior per-
formance of VAs is attributed chiefly to the rapid access
to vast amounts of knowledge. However, although people
are already using them regularly for various uncritical tasks,
the general attitude toward VAs remains largely ambivalent
or hostile when it comes to critical situations like babysit-
ting children or medical diagnosis [3]. In medical cases,
specifically, human agents are preferred over computer-based
agents, even if they are equally competent [4]. The under-
lying reasons are manifold, among which humans’ frequent
reluctance to delegate is arguably the fundamental one [5].
The complex algorithms behind VAs are difficult for users to
understand, which constitutes another major issue impeding
delegation. Conversely, human agents are generally more
communicable, prosocial, and flexible than engineered and
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programmed systems such as VAs. There are also concerns
about these lacking empathy and, once delegated to, possibly
using immoral or inhumane ways to achieve their designated
goals [6].

In order to understand decisions related to the delega-
tion to computer-based agents, various relevant factors are
investigated in the literature. For instance, evidence shows
that delegation to software agents can be subject to the
same factors governing interpersonal delegation, including
accountability, controllability, and trust [7]. Accountability
denotes the extent to which users are responsible for the
task outcome and can be inversely correlated with del-
egation [7]. Controllability refers to the extent to which
users can intervene in the situation and agents’ behaviors.
Users generally prefer to retain some degree of control than
grant complete control to agents [3], [7]. Trust is highly
relevant and regarded as a crucial factor of users’ delegatory
intention [7], [8].

Theory of mind (ToM) as a potential factor is garnering in-
terest yet not fully explored. ToM can be generally described
as the ability to think from other people’s perspectives and
is deemed a vital skill for successful interpersonal collab-
oration. The human-VA interaction of today increasingly
resembles interpersonal interaction and is evolving from
the supervisor-supervisee to peer-like relationships, wherein
ToM could also play an important role. In the present
study, we investigate the impact of VAs’ ToM capabilities
on the delegation to robotic VAs, with the results having
implications for robot and robotic VA design.

In the remainder of this paper, we first discuss related
work to derive our central hypothesis regarding the influence
of ToM on the delegation to VAs in Section II. We then
elaborate on our experiment, including its design, results, and
analysis, in Section III before examining the impact of ToM-
related and other factors on delegation and summarizing the
work in Sections IV and V, respectively.

II. RELATED WORK

Delegation to others is ubiquitous in human societies.
However, in many cases, particularly the critical ones, mak-
ing the right delegation decision is often challenging, even
to top managers in successful companies [9]. The innate fear
of potential loss exacerbates this issue, encouraging people
to bypass the delegation, even if it would be beneficial.
This phenomenon has been extensively researched in the
interpersonal context, whereas delegation to software agents
such as robotic VAs remains under-studied.

For example, in [10], individuals with low-level situation
awareness were found more likely to delegate to software



Pizza is yummy.Pizza is yummy. Pizza is yummy.

Zero order : I think pizza is yummy. First order : I think she thinks pizza is yummy. Second order : I think she thinks he thinks pizza is yummy.

Fig. 1: Exemplary illustration of different ToM orders.

agents in critical situations. Participants were provided with
several job offers in the experiment and tasked to choose one
either by themselves or an algorithm. The low-awareness
group was more willing to delegate the choice to an al-
gorithm than the high-awareness group. Similarly, in [11],
the attachment between individuals and software agents was
positively correlated with the likelihood of delegation.

A. Theory of Mind

ToM is commonly defined as the ability to represent other
people’s mental states and to distinguish them from one’s
own. While it is highly similar to other socio-cognitive
notions, such as mentalizing, mindreading, or empathy, ToM
is arguably one of the clearest concepts with a far-reaching
consensus on its definition [12].

The term ToM was devised for describing non-human
primitives’ ability to infer others’ beliefs [13]. It was later ex-
tended to sociology and psychology and applied to humans.
The Sally-Anne test, for example, has been commonly used
for examining children’s ToM ability by checking whether
they can realize other people’s false beliefs [14]. Until
today, ToM has been widely adopted and studied in various
areas, including economics [15], mental health [16], agent
modeling, art [17], in-game storytelling [18], and more.

ToM can be classified into different orders, of which the
common ones include zero, first, and second orders (cf.
Fig. 1). An individual with a zero-order ToM is unaware
of and unable to infer others’ beliefs. An individual with
a first-order ToM can infer others’ beliefs and distinguish
them from the individual’s own belief. An individual with a
second-order ToM infers not only others’ beliefs but also
others’ inference of other individuals’ beliefs. A higher-
order ToM –theoretically infinite– is possible, yet mostly
unrealistic.

B. Theory of Mind and Trust

Trust, as previously mentioned, is closely related to del-
egation and therefore constitutes another dependent variable
in the present study to help explain the experiment outcome.
There are at least two fundamental abilities underpinning
trust, which, as indicated in a widely accepted definition of
trust [19], include the ability to estimate risks and predict
others’ actions. The latter involves inferring others’ beliefs
and intentions, i.e., ToM. For instance, when considering
a stranger’s request, an individual typically would infer
the intention behind it and make decisions based on its
benevolence.

There exist empirical evidence showing the link between
trust and ToM. Many of these experiments were conducted
by psychologists who study children’s ToM ability. For
instance, children’s ToM ability was found highly relevant to
their performance in selective trust tasks [20], [21]. A child
with a developed ToM tends to be more reflective on their
trusting beliefs, which leads to a low trusting tendency [22].
In neuroscience, it was found that an individual’s trust
can be modulated by stimulating a specific set of brain
regions, namely the theory of mind network [23]. This part
of our brains is frequently implicated in false-belief-related
conditions under fMRI [24].

While a trustor’s ToM is highly relevant, the effect of
a trustee’s ToM remains unclear. ToM may improve VAs’
trustworthiness by facilitating the development of a shared
mental model with human users. A shared mental model
can be generally described as a team member’s mental
representation of task-related (e.g., task requirements or
difficulties) and team-related knowledge (e.g., teammates’
backgrounds, intentions, or preferences) that is also held in
common among other team members within a collaborative
team [25]. A shared mental model in a human-VA hybrid
team significantly increased humans’ trust in their VA team-
mates [26]. Having a ToM enables VAs to actively build
a shared mental model with human users by representing
others using intentions, beliefs, and more.

A recent study found that users tend to send more money
to a robotic VA in the Investment Game when the agent
appears to have ToM capabilities than when not [27]. How-
ever, the authors pointed out that this positive impact was
not reflected in users’ self-reported trust in the robotic VA.
Users’ trust in VAs may also decrease when VAs possess a
higher-order ToM, similar to the so-called Uncanny Valley
issue [28]. The drop in VAs’ trustworthiness may, in turn,
result in less delegation to VAs.

As discussed above, there still exists controversy over
how VAs’ ToM impacts their trustworthiness. Given that we
found more positive than negative evidence and that trust
closely correlates with delegation, we hypothesize a positive
correlation between robotic VAs’ ToM and the delegation to
robotic VAs.

Hypothesis: Robotic VAs with higher-order ToM are more
likely to be delegated to than lower-order ToM robotic VAs.



III. EXPERIMENT

We devised a between-subjects experiment, wherein par-
ticipants first play a board game, namely Colored Trails (CT),
in a virtual environment with a robotic VA and then answer
a questionnaire. Human-agent delegation is rarely explored
in virtual environments but mostly with two-dimensional
widgets-based user interfaces despite the potential in terms
of presence and engagement. In order to fill this gap, our
experiment is implemented in a three-dimensional virtual
environment (cf. Fig. 3), which allows for dedicated follow-
up research on human-VA delegation, e.g., in VR contexts.
Before discussing the experiment design in Section III-B and
the obtained results in Section III-C, we briefly introduce the
CT game in the following section.

A. Colored Trails

The CT game was proposed in [29] and later formalized
in [30], serving as a testbed to “design, learn and evaluate
players’ decision-making behavior as well as group dynamics
in settings of varying complexity” [30]. It has several varia-
tions and, in our experiment, is played by two players on a
board consisting of 25 colored tiles, as Fig. 2 illustrates. Each
tile is painted with one of the following five colors: black,
grey, purple, white, or yellow. The players’ game pieces
(illustrated as chess pieces in Fig. 2) are initially placed on
the tile at the board center. Each player is assigned a goal
location (illustrated as numbered pins) visible only to the
individual player and is tasked to move the game piece to
the goal location as close as possible. A game piece can
be moved from its current location onto a horizontally or
vertically adjacent tile if and only if the player spends a chip
of the same color as the tile. A chip (illustrated as the colored
mini squares below players’ illustrations) can also have one
of the five colors. In the beginning, each player is endowed
with four chips. To encourage negotiation (cf. the following
paragraph), the colors of these chips are manipulated to
prevent players from reaching their goal locations only with
the initial chip set.

1 2

1

2

1 2

Fig. 2: The Colored Trails game.

A CT game comprises two phases: a negotiation phase,
followed by a movement phase. During the negotiation phase,
the two players may negotiate and exchange their chips by

alternately making offers until one’s offer is accepted or
rejected by the other. An offer describes a propositional
redistribution of chips. Maximally six offers can be made
between the two players in this phase. Once the six-offer
limit is reached, the current turn player can no longer make
new offers but only accept or reject the last offer. If an offer
were accepted, both players’ chip sets would be redistributed
as the offer indicates; otherwise, the chips would remain
the initial distribution. Players with a ToM can infer the
opponents’ belief (as represented by the goal pins in Fig. 2)
and, theoretically, have a better chance to reach an agreement
in the negotiation than players without a ToM [31]. In the
movement phase, players can move their game pieces until
they are satisfied.

A player’s score is calculated according to three criteria:
whether the player has reached the goal location, how close
the player is to the goal location, and how many chips are
left. A player receives 100 points for each step made toward
the goal location. Arriving at the goal location grants 500
points bonus, and each unused chip adds 50 points.

B. Experiment Design

We recruited 150 participants from the crowd-sourcing
platform Prolific, with each participant receiving a certain
amount of money upon completing the experiment. To sim-
ulate a critical situation, we fabricated a very high bonus and
claimed that their likelihood of winning the bonus positively
correlates with their performance in the game.

The entire experiment, including the CT game and the
post-assessment questionnaire, is conducted within the same
virtual environment to reduce the break in presence [32] and
is distributed as an online browser game for better acces-
sibility. The experiment begins with an interactive tutorial
introducing the game rules, after which participants play
five rounds of the CT game with a robotic VA (cf. Fig. 3)
for training. The agent has a ToM whose order constitutes
the only independent variable in this experiment. After the
training, participants are told that they will play five more
rounds against a different agent and that their performance in
these pertains to the bonus. Participants can choose to play
the subsequent rounds themselves or delegate them to the
agent they previously interacted with during the training.

Participants are directed to the questionnaire after making
their choices on delegation. The questionnaire (cf. Table I)
follows a seven-point Likert scale with two customized items
to measure the task criticality and delegatory intention, plus
twelve items from [33] to measure participants’ trust and
distrust in the agent. The questionnaire furthermore includes
two attention checkers to identify inattentive participants.
The experiment ends after participants have finished the
questionnaire. Akin to the bonus, the other five rounds are
fabricated to induce a sensation of criticality and will not be
played.

We adopted the algorithm proposed in [31] to enable the
agent with a ToM, which is modeled using three components:
the belief about an offer being accepted by the opponent,
the possibility of a tile being the opponent’s goal location,



Virtual agent opponent playing 
the Colored Trails game.

Black chip. Together with the three 
chips to the left, it constitutes the 

agent's chip set.

Panel with agent's initial chip set for 
reference during negotiation.

The green cube on the center tile is 
the agent's game piece.

The offer button and its two adjacent 
buttons are player controls in the game.

Black tile. Together with the other
24 tiles, it constitutes the 5x5 game

board at the center.

The orange cube on the center tile is 
the human player's game piece.

Orange pin indicating the
human player's goal location (the

black tile underneath).

Panel with human player's initial chip 
set for reference during negotiation. 

Yellow chip. Together with the three 
chips to its right, it constitutes 
the human player's chip set.

Fig. 3: The virtual environment used in the experiment.

and the confidence in a ToM order when there are several
ToM orders available. In [31], belief is formalized as the
empirical probability of an offer being accepted, which is
updated after the offer’s proposal, acceptance or rejection.
Due to its empirical characteristics, pre-training is necessary
to initialize an agent’s belief. The possibility is calculated
based on the discrepancy between the expected and actual
behaviors of the opponents and the assumption that the
opponents would never make an offer that decreases their
score. An agent determines its confidence in using a ToM
order by comparing the accuracy of different ToM orders
available to it.

In line with the original experiment setup, we configured
the game setting of each round (including the game board
color distribution, initial chip distribution, and goal locations)
with between-agent simulations so that:

• the human player can reach the goal location with the
eight chips in the game.

• the simulation predicts that the number of offers made
in the negotiation is between two and six.

• the simulation predicts that the game has different
outcomes when the opponent has a ToM of a different
order.

TABLE I: Questionnaire items (attention checkers excluded)

Custom
C1: Winning the bonus reward is a critical task to me.
C2: I intend to delegate the succeeding games to the agent.

Distrust
D1: The agent is deceptive.
D2: The agent behaves in an underhanded manner.
D3: I am suspicious of the agent’s intent, action, or outputs.
D4: I am wary of the agent.
D5: The agent’s actions will have a harmful or injurious outcome.

Trust
T1: I am confident in the agent.
T2: The agent provides security.
T3: The agent has integrity.
T4: The agent is dependable.
T4: The agent is reliable.
T6: I can trust the agent.
T7: I am familiar with the agent.

The human player is modeled as a first-order ToM agent in
the simulation since first-order ToM tends to be commonly
used by human players [31].

Participants were divided into three groups of 50, with
each group playing against an agent with a specific ToM
order, including zero, first, and second orders. Third or higher
orders are possible but marginally realistic and productive.
Therefore, the first three orders should suffice to reveal the
dynamic impact of VAs’ ToM capability on delegation.

C. Results

We excluded participants tendering low-quality data, such
as failing attention checkers or responding excessively quick
or slow to the questionnaire. Ultimately, 75 valid participants
remain, whose demographics are presented in Table II.

TABLE II: Participant demographics

Group N Age Gender

ToM0 23 M=33.35, SD=14.79 10 Female, 13 Male
ToM1 25 M=29.72, SD=11.06 13 Female, 12 Male
ToM2 27 M=29.26, SD=9.52 14 Female, 13 Male

Table III details the participants’ delegation decisions
and the respective human and agent player performance.
The result presented in Table III implies a non-monotonic
relationship between delegation and ToM orders. In the
ToM1 group, only a small part of the participants chose
to delegate, whereas the delegation rate of the other two
groups rose to around 50%. Corresponding to the discrepancy
in the delegatory behaviors, there is a close-to-significant
difference in participants’ delegatory intentions across groups
(H=4.844, p=0.09). Thus, our hypothesis that higher levels
of ToM would induce more delegations remains unsupported.

TABLE III: Delegation decisions and player performance

Group
Delegation Performance (points)

Yes No Rate Participant Agent

ToM0 11 12 47.8% 531.7 629.1
ToM1 4 21 16.0% 571.2 544.8
ToM2 16 11 59.3% 469.3 598.1



C1

C2

D1

D2

D3

D4

D5

T1

T2

T3

T4

T5

T6

T7

ToM0

C1

C2

D1

D2

D3

D4

D5

T1

T2

T3

T4

T5

T6

T7

ToM1

Strongly disagree Moderately disagree Slightly disagree Neutral Slightly agree Moderately agree Strongly agree

C1

C2

D1

D2

D3

D4

D5

T1

T2

T3

T4

T5

T6

T7

ToM2

Fig. 4: Aggregated questionnaire results of the ToM0, ToM1, and ToM2 groups.

As Fig. 4 shows, participants’ responses to the question-
naire are generally similar across groups. Both trust and
distrust in the agent, operationalized as the mean score of
the trust-related and distrust-related items, respectively, are
not significantly different amongst the three groups (Htrust=
3.983, ptrust=0.146; Hdistrust=0.949, pdistrust=0.622).

IV. DISCUSSION

The experiment results demonstrate that the order of ToM
is an insignificant indicator of users’ delegatory behavior
and intention. Nevertheless, the analysis of the entire data
set (combining the three groups) reveals that participants’
performance is a relevant factor. As Table IV shows, there is
a medium negative correlation between participants’ mean
scores and delegatory or trusting intention. Conversely,
agents’ mean scores are not correlated with either subject.

TABLE IV: Spearman Correlation Coefficients

Trust Delegation Agent MS Parti. MS SD

Trust 1 - - -
Delegation 0.68***

+++ 1 - -
Agent MS 0.05 0.08 1 -
Parti. MS -0.27***

++ -0.29***
++ 0.48***

+++ 1
SD 0.26***

++ 0.33***
++ 0.56***

+++ -0.38***
++ 1

* p<0.15; ** p<0.10; *** p<0.05
+ weak effect; ++ medium effect; +++ strong effect;
Effect size calculated using Pearson r
MS = Mean Score; Parti. = Participant;
SD = Score Difference (between Agent MS and Part. MS)

Therefore, participants’ delegation decisions and trusting
attitudes may originate mainly from evaluating their own
performance or relative performance (i.e., the difference be-
tween the agent and participant scores) instead of the agents’
performance. Such a self-centric stance may have rendered
ToM a low-priority and consequently less significant factor.
Despite conflicting with our hypothesis, this result appears
reasonable because losses and gains are an intuitive and

reliable source of information for participants to assess their
decisions. Comparatively, the perception of agents’ ToM is
less straightforward, not to mention that such perception can
be possibly overlooked due to the algorithmic opacity. In
this vein, an interesting follow-up study is to test whether
the information of an agent’s ToM can influence delegation.
The information provides users another approach to assess
their decisions and, consequently, may implicitly persuade
them to opt for higher-order ToM agents. Moreover, another
experiment that controls agent performance is needed to
confirm the effect of performance on delegation.

In addition to the correlation between performance and
delegation (or trust), Table IV also reveals a strong correla-
tion between delegation and trust, consistent with many other
studies on human-agent delegation (cf. Section II). Therefore,
participants’ trust in agents may also explain the varied
delegation choices. Although the correlation is confirmed,
the causality remains unclear and requires further experi-
mental investigation. Establishing evidence for the causality
would be meaningful as it permits deriving reliable practices
for human-VA delegation directly from the extensive trust-
related literature.

On a different note, participants’ overall performance-
oriented preference reflects a supervisor-supervisee relation-
ship between participants and agents. ToM may have a
relatively limited effect under this type of relationship than
a peer-like, collaborative relationship as in interpersonal
interactions. The formation of the supervisor-supervisee re-
lationship can be caused by, e.g., the contextualization of
our experiment. Thus, it would also be interesting to recon-
textualize the experiment with more collaborative tasks and
examine ToM’s impact in these contexts.

While participants’ different performance may account
for their varied delegation choices, where the difference
originates from is another question. Analysis shows that
participants’ scores are closely related to the frequency of
successful negotiations (ρ=0.682, p=1.552×10−11). More-
over, agents’ scores also correlate with the frequency of suc-



cessful negotiations (ρ=0.548, p=3.627×10−7), indicating
that both players can benefit from successful negotiations.
Two specific game settings may have resulted in these
correlations: (1) the initial chip sets are insufficient for
players to reach their goal locations; (2) the bonus score for
reaching goal locations (500 points) is significantly higher
than the other two types of score reward (100 points for
each step moved toward the goal location and 50 points for
each unused chip).

A successful negotiation occurs only in two situations:
a player has accepted the other player’s offer or the other
way round. Following this line of thought, we further found
that the opponent’s behavior predominantly influences a
player’s scores. More specifically, a participant’s scores are
determined by the frequency of the participant’s offers ac-
cepted by the agent (ρ=0.552, p=2.886×10−7). Similarly,
an agent’s scores are determined by the frequency of its
offers accepted by the participant (ρ=0.407, p=0.003×
10−1). However, the players’ own behavior has only a
limited impact on their scores (participants’ behavior on
participants’ scores: p=0.998, agents’ behavior on agent’s
scores: p=0.346). In the experiment, with the agents’ ToM
order growing from zero to two, the number of offers that
the agents accepted changes nonlinearly from 1.22, over
2.64, to 1.56. This nonlinearity may explain participants’
different performance across the three groups and in turn is
reflected in the participants’ delegation choices as Table III
indicates. The mutual dependency may be the product of
players’ rationality, as an offer is generally more beneficial
to the proposer than the responder.

Our experiment employs different game settings (game
board color distributions, initial chip sets, and goal loca-
tions) from the original study [31]. Some other changes (cf.
Table V) facilitate investigating human-VA delegation over
testing the algorithm performance. Consequently, our exper-
iment yields different results. As Fig. 5 illustrates, players’
performance is positively correlated in our experiment but
negatively correlated in the original study. The divergence is
likely caused by the different intensities of conflict of interest,
i.e., the number of chips that both players demand. In the
original study’s settings, an intense conflict of interest may
exist, where the two players have to compete over limited
resources. In our experiment, however, the conflict of interest
is relatively moderate, in which case successful negotiations
are more likely to be mutually beneficial than a compromised
solution to the dilemma.

TABLE V: Experiment setting comparison

Setting This study Original study [31]

Participant count 75 27
Experiment type Between subjects Within subjects
Game rounds 5 8
Initiator Participant Alternating
Time limit No Yes
Belief reset No Yes

From an overarching perspective, delegation can be in-
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Fig. 5: Increased scores (adapted from [31]). The dashed
lines denote the maximal score that a player can obtain only
with the initial chip set. The solid black line shows the Pareto
efficient outcomes.

fluenced by many other factors spanning from dispositional
aspects such as mood, age, gender, health, over systematic
properties including, e.g., performance, explainability, trans-
parency, interactivity, to social cues through embodiment, so-
cial presence, expressions, and others. ToM as a single factor
may marginally stand out as a prominent one among these.
Consequently, other more influential factors can dampen its
effect on delegation.

Due to the complex nature of ToM, the findings from our
experiment should be generalized to other contexts with care.
For example, emotion and intention inferences can be equally
important as belief inference for VAs’ ToM capabilities,
whereas these aspects are not considered in the present study.
Furthermore, other ways exist to theoretically categorize
ToM apart from the one used in the experiment. Our results
thus may not apply to those contexts based on a different
ToM architecture.

The present study is initial research toward investigating
the impact of ToM on the delegation to robotic VAs. Thus,
in our experiment, agents’ ToM capabilities were manifested
only in their strategies, i.e., chip redistributions. This consti-
tutes a significant limitation of the present study, since there
is no verbal or body-language communication between the
two players that VAs can and should utilize to better present
their negotiation and ToM skills. We plan to further examine
these communication channels in the follow-up research.

V. CONCLUSION

ToM constitutes a crucial element in interpersonal interac-
tion; however, our results indicate that it has only a limited
impact on the delegation to robotic VAs. Our initial hy-
pothesis that users’ delegatory behavior and intention would
increase when interacting with higher-order ToM agents is
not supported. Human users’ willingness to delegate appears
to be predominantly correlated with their own performance
and not monotonically linked to the agents’ ToM capabil-
ities. Consequently, designers of robots and robotic agents
aiming to facilitate delegation may consider refraining from
using ToM-resemblance features and focusing on balancing



user performance perception instead to induce the desired
delegation behaviors.
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