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ABSTRACT
In safe Reinforcement Learning (RL), the agent attempts to find
policies which maximize the expectation of accumulated rewards
and guarantee its safety to remain above a given threshold. Hence,
it is straightforward to formalize safe RL problems by both a reward
function and a safety constraint. We define safety as the probability
of survival in environments where taking risky actions could lead to
early termination of the task. Although the optimization problem is
already constrained by a safety threshold, reward signals related to
unsafe terminal states influence the original maximization objective
of the task. Selecting the appropriate value of these signals is often
a time consuming and challenging reward engineering task, which
requires expert knowledge of the domain.

This paper presents a safe RL algorithm, called Masked Con-
strained Policy Optimization (MCPO), in which the learning pro-
cess is constrained by safety and excludes the unsafe reward signals.
We develop MCPO as an extension of gradient-based policy search
methods, in which the updates of the policy and the expected re-
ward models are masked. Our method benefits from having a high
probability of satisfying the given constraints for every policy in
the learning process. We validate the proposed algorithm in two
continuous tasks. Our findings prove the proposed algorithm is
able to neglect unsafe reward signals, and thereby resolving the
desired safety-performance trade-off without having the need for
hand-tuning rewards.
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1 INTRODUCTION
In reinforcement learning (RL), agents in an unknown environment
learn how to act in order to maximize the expected long-term return
on the basis of a real valued reward signal. A particular way of
acting is referred to as a policy that is formally defined as a mapping
from environmental observations to the probabilities of selecting
actions. In several real-world tasks, some actions can be harmful
to the agent itself or to others in the same environment. In such
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cases, the learning process should consider both the rewards and the
potential risk in the environment. Safe RL methods aim to maximize
the expectation of accumulated rewards, while respecting safety
constraints during the learning and deployment process [9]. These
methods can be categorized into two approaches: (i) modifying the
exploration strategy, and (ii) modifying the optimization criterion.

Exploration strategies describe the balance between exploring
the environment to collect more information, and choosing actions
that tend to be most rewarding, given the current information. Mod-
ification of the exploration strategy to avoid risky situations can be
achieved through the incorporation of (i) external knowledge, or
(ii) a risk metric. An example of the first approach is provided in [1],
where the agent that is involved in a helicopter flying task is pro-
vided with a set of demonstrations from an instructor. Using these
demonstrations, the agent learns a model of the helicopter dynam-
ics and derives a safe policy in an off-line manner. Instructors can
provide advice to assist agents’ exploration also during the online
learning processes [8]. Surely, these techniques may suffer from
biases that are introduced by the instructor. The second approach
encourages the agent to explore certain regions of the environment
by introducing a safety metric as an exploration bonus [11]. Learn-
ing safe policies by this approach is not always reliable, considering
the safety metric is often not correctly approximated in the early
steps of the learning process [9].

Modification of the optimization criterion, i.e. the expected value
of accumulated rewards, can be categorized into three methods.
In the first, the policy is optimized over its worst case return [10].
Hence, this method tends to produce overly conservative policies,
and lacks the ability of managing the trade-off between safety and
performance. The second method redefines the maximization ob-
jective as a weighted formulation of both the reward signals and
the potential risk observed in the environment. Despite improv-
ing transparency to the safety-performance trade-off, this method
requires task-specific expert knowledge to find the appropriate
weights of the objective function in order to satisfy given safety
constraints [14, 15, 22]. In addition, the policy model might be-
come trapped in plateaus (i.e. saddle points or local minima) during
learning, due to the implicit interference between the two separate
goals in the same objective function [18]. The last method avoids
these issues by incorporating safety via constraints. The standard
formulation for these RL techniques is the constrained Markov De-
cision Process (CMDP) framework [3], where the learned policies
must satisfy constraints on expectations of auxiliary costs. In case
actions are continuous and possibly high-dimensional, state-of-the-
art approaches are based on policy search methods [5]. Heuristic
algorithms for policy search in CMDPs have been proposed [23].
Furthermore, approaches based on primal-dual methods [4, 17] have
been shown to converge to constraint-satisfying policies. However,
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these policy search methods do not guarantee constraint satisfac-
tion throughout the learning process. Constrained Policy Optimiza-
tion (CPO) is a trust region policy search method for CMDPs, which
provides such guarantees by limiting the influence of approxima-
tion errors in the learning process [2]. This is achieved by restricting
the size of the change applied to the policy at each iteration.

In this paper, we study safe RL in a continuous CMDP where the
policy safety constraints are defined by a lower-bound on the prob-
ability to remain in a predefined set of safe states. We follow [12]
in defining an unsafe state as a terminal state that is not part of
the agent’s objective to complete its task. For example, in a naviga-
tion task of a difficult terrain, the unsafe states correspond to an
unmanned ground vehicle being jammed. We showcase how the
reward signals associated to unsafe states influence the degree of
safety of the optimal policy, although the optimization criterion is
already constrained by a safety threshold. Therefore, the unsafe
reward signals require to be hand-tuned, which is a highly demand-
ing task only suitable to domain-specific experts. The optimization
criterion is thus preferably unmodified by the unsafe rewards. We
propose a novel approach, named Masked Constrained Policy Opti-
mization (MCPO), which excludes the unsafe reward signals from
the maximization objective. This is achieved by using the method
of masking, which zeroes certain values based on a predicate being
true or false. The contribution of this paper is (i) an illustration
of how the optimization criterion of a CMDP is redundantly mod-
ified by unsafe reward signals, and (ii) a proposed algorithm to
free RL task designers from the unnecessary time-consuming and
challenging task of hand-tuning unsafe reward signals

The rest of the paper is organized as follows: section 2 formal-
izes the problem of selecting values of unsafe reward signals in a
constrained optimization problem, and section 3 illustrates this by
a toy example. Afterwards, MCPO is presented in section 4 as a
safe policy learning method, based on the concepts of importance
sampling, trust region policy optimization and constrained pol-
icy optimization. A comparison between the performance of CPO
and MCPO in two continuous navigation tasks is then provided in
section 5. Finally, concluding remarks are presented in section 6.

2 PROBLEM FORMULATION
2.1 Preliminaries
We formalize the interaction between the agent and the environ-
ment by a Markov Decision Process (MDP), defined as a tuple
⟨S,A, 𝑃, 𝑅⟩, where S is the set of states, A is the set of actions,
𝑃 : S × A × S → [0, 1] is the transition probability function,
𝑅 : S × A × S → R is the reward function with R ⊂ R. At
each time step 𝑡 , the agent perceives a state 𝑠𝑡 ∈ S and selects an
action 𝑎𝑡 ∼ 𝜋 (· | 𝑆𝑡 ) where 𝜋 : S × A → [0, 1] is the stochas-
tic policy. The agent transitions into the next state 𝑠𝑡+1 ∼ 𝑃 (· |
𝑠𝑡 , 𝑎𝑡 ) and receives a reward 𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). A trajectory
𝜏 � {𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, ...} is the time sequence of states, actions
and rewards during one episode, which ends when a terminal state
is reached.

In a RL control task, we aim to find a policy 𝜋 which maximizes
the objective function 𝐽 (𝜋) of the rewards accumulated over a
trajectory generated by 𝜋 . The objective function is often defined
as the expectation of the discounted cumulative rewards, i.e. 𝐽 (𝜋) �

E𝜏∼𝜋
[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡+1

]
with 𝑇 ≥ 0 as the time of termination and 𝛾 ∈

[0, 1) as the discount factor.𝑇 is random variable which defines the
duration of an episode. The discount factor essentially determines
how much rewards in the distant future, relative to those in the
immediate future, are of interest to the agent.

In order to express the difference in performance between two
policies, let us define the return as 𝐺𝑡 �

∑𝑇−𝑡
𝑘=0 𝛾

𝑘𝑟𝑡+1+𝑘 . The value
function of a state 𝑠 under a policy 𝜋 is then defined as 𝑉 𝜋 (𝑠) �
E𝜏∼𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠], the action-value function as𝑄𝜋 (𝑠, 𝑎) � E𝜏∼𝜋 [𝐺𝑡 |
𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], and the advantage function, which expresses
the advantage of taking action 𝑎 compared to the average action
taken by policy 𝜋 in state 𝑠 , as 𝐴𝜋 (𝑠, 𝑎) � 𝑄𝜋 (𝑠, 𝑎) − 𝑉 𝜋 (𝑠). The
action-value function can be written in terms of 𝑉 𝜋 as 𝑄𝜋 (𝑠, 𝑎) =
E𝑠′∼𝑃 [𝑅(𝑠, 𝑎, 𝑠 ′) + 𝛾𝑉 𝜋 (𝑠 ′)]. From this follows

𝐴𝜋 (𝑠, 𝑎) = E𝑠′∼𝑃
[
𝑅(𝑠, 𝑎, 𝑠 ′) + 𝛾𝑉 𝜋 (𝑠 ′) −𝑉 𝜋 (𝑠)

]
(1)

and thereby

𝐽 (𝜋𝑘+1) = 𝐽 (𝜋𝑘 ) + E𝜏∼𝜋𝑘+1

[
𝑇∑
𝑡=0

𝛾𝑡𝐴𝜋𝑘 (𝑠𝑡 , 𝑎𝑡 )
]

(2)

with 𝜋𝑘+1 and 𝜋𝑘 as two arbitrary policies. For a formal proof of
Equation (2), see [13].

2.2 Safe Policies
In this paper, we study RL tasks in a risk-embedded MDP, where
we define risk as the probability of ending an episode in an unsafe
state [12]. Formally, let 𝑠△ denote the unsafe terminal state which
the agent is required to avoid with a certain probability. Consider,
for example, a self-driving vehicle learning to remain in the center
of its lane [24]. Some actions may lead to damage itself. Such an
episode does not end by reaching the goal state, but rather hav-
ing the agent nonfunctional due to the agent entering a state 𝑠△ .
Consequently, we refer to a MDP as risk-embedded if and only if
∃ 𝑠, 𝑎 : 𝑝 (𝑠, 𝑎, 𝑠△) > 0, and define the level of safety from following
a policy as follows:

A policy 𝜋 is 𝛿-safe ⇐⇒ E𝜏∼𝜋
[
Pr(𝑠△ ∈ 𝜏)

]
≤ 1 − 𝛿 (3)

A common approach to learn 𝛿-safe policies is to redefine the
maximization objective as a weighted combination of the accumu-
lated reward and the notion of safety:

𝐽𝜔 (𝜋) = E𝜏∼𝜋

[
𝑇∑
𝑡=0

𝛾𝑡
(
𝑟𝑡+1 + 𝜔 Pr(𝑠△ ∈ 𝜏)

) ]
(4)

with 𝜔 as a parameter that determines the trade-off between the
task rewards and the potential risk. However, selecting the value of
𝜔 is a highly challenging task, even for domain experts, since the
relation between 𝜔 and 𝛿 is far from straightforward.

As an alternative approach to learning 𝛿-safe policies, the risk-
embedded MDP is augmented to a constrained Markov Decision
Process (CMDP) by defining an auxiliary cost function 𝐶 : S ×
A × S → C with C ⊂ R. Specifically, the cost function is defined
as 𝐶 (𝑠, 𝑎, 𝑠 ′) � 1

(
𝑠 ′ = 𝑠△

)
with 1 as the indicator function such

that 1
(
𝑠 ′ = 𝑠△

)
= 1 if 𝑠 ′ = 𝑠△ holds and zero otherwise. The value,

action-value, and advantage functions for the costs are analogous
to those of the rewards, and respectively denoted by 𝑉 𝜋

𝐶
, 𝑄𝜋

𝐶
, and

𝐴𝜋
𝐶
. Similar to the objective of sampled rewards, 𝐽𝐶 (𝜋) denotes
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Figure 1: A risk-embedded navigation environment with ex-
emplary trajectories shown.

the expectation of the discounted cumulative costs, i.e. 𝐽𝐶 (𝜋) �
E𝜏∼𝜋

[∑𝑇
𝑡=0 𝛾

𝑡
𝑐𝑐𝑡+1

]
with 𝑐𝑡+1 = 𝐶 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). An optimal 𝛿-safe

policy 𝜋∗ would then satisfy the following constrained optimization
problem:

𝜋∗ = argmax
𝜋

𝐽 (𝜋)

s.t. 𝐽𝐶 (𝜋) ≤ 1 − 𝛿
(5)

Although the safety costs are excluded from the maximization
objective in CMDPs (5), a similar issue to that of Equation (4) occurs
for learning in risk-embedded MDPs. For the purpose of embedding
risk into aMDP, the unsafe terminal state 𝑠△ was introduced. Conse-
quently, the original task reward function should be extended with
a mapping 𝑅△ from unsafe transition tuples

〈
𝑠, 𝑎, 𝑠△

〉
to rewards.

However, the implementation of 𝑅△ is equivalent to the selection
of the parameter 𝜔 in Equation (4), and thus it suffers from the
same drawbacks previously mentioned. In fact, the mapping 𝑅△

influences the balance between safety and task completion, and
when incorrectly defined, the agent learns suboptimal policies. We
illustrate this in the following section.

3 PROBLEM ILLUSTRATION
Figure 1 shows the environment of a risk-embedded navigation
task in which the goal for the agent is to learn the shortest 𝛿-safe
path between two given positions. Each tile in the grid represents a
state. The agent’s start and goal states are respectively placed in the
bottom left and right of the grid. The agent is capable of moving to a
neighboring tile by one of its four actions: up, down, left, right. Tiles
with a gray triangle ▽ represent states with a probability 𝜌 > 0 of
transitioning to 𝑠△ for any action. Transitions from other states are
deterministic. An episode is terminated upon reaching either the
goal or an unsafe state. As a navigation task, the agent should find
the shortest path to the goal state. Therefore, the original reward
function is defined as ∀𝑠, 𝑠 ′ ∈ S▽,∀𝑎 ∈ A : 𝑟 (𝑠, 𝑎, 𝑠 ′) = −1 with
S▽ = S \ 𝑠△ . We consider three trajectories {𝜏𝑔 , 𝜏𝑟 , 𝜏𝑏 } (green solid,
red dashed, blue dotted) sampled from different 𝛿-safe deterministic
policies {𝜋𝑔 , 𝜋𝑟 , 𝜋𝑏 } respectively, for 𝛿 = 0.1. The ordering by risk
of the policies is 𝐽𝐶 (𝜋𝑏 ) < 𝐽𝐶 (𝜋𝑔 ) < 𝐽𝐶 (𝜋𝑟 ) ≤ 1−𝛿 . Since all three
policies are 𝛿-safe, the agent should find the optimal policy 𝜋∗ = 𝜋𝑔
in the RL problem as defined in Equation (5).

In what follows, we demonstrate how the value of the reward
signal given to the agent upon entering the unsafe state may lead
to the learning of suboptimal policies. Let 𝑟 △ denote this signal, i.e.
𝑅(𝑠, 𝑎, 𝑠△) = 𝑟 △ for all 𝑠, 𝑎. Table 1 shows the task performance of
the three policies for different values of 𝑟 △ . A naive approach is

Table 1: Performance of the respective policies shown in Fig-
ure 1 for different settings of the unsafe reward signal 𝑟 △.

𝑟 △ 𝐽 (𝜋𝑔 ) 𝐽 (𝜋𝑟 ) 𝐽 (𝜋𝑏 )
0 -3.8 -3 -8

-100 -13.8 -90.5 -8
-10 -4.8 -11.75 -8

to provide the agent with a reward of zero upon termination due
to an encountered risk, as followed in [6]. In this case, the agent
would learn to behave according to policy 𝜋𝑟 . Since the original
reward function is strictly negative, the agent will seek to obtain
𝑟 △ = 0 as much as allowed, and will consequently maximize the
safety constraint objective 𝐽𝐶 (𝜋) towards its upper bound. Another
common approach is to set 𝑟 △ to large negative values, essentially
modifying the optimization criterion as risk-averse [10]. A well-
known example of this approach in RL literature, is theCliffWalking
task [21]. For instance, let 𝑟 △ = −100, in this case, the agent would
find the overly conservative policy 𝜋𝑏 as a solution to Equation (5).
Finally, the optimal 𝛿-safe path 𝜋𝑔 is found for 𝑟 △ = −10: which
was carefully selected based on the expected rewards and costs
obtained by each policy. Hence, in order to select a value for 𝑟 △
that enables finding the optimal 𝛿-safe policy, the task designer has
to know such policy in advance. In the next section, we propose a
novel approach to learn optimal 𝛿-safe policies, while avoiding the
selection process of such reward signals.

4 SAFE POLICY LEARNING
Policy search methods rely on finding a parameterization 𝜃∗ of the
policy that maximizes the expected return:

𝜃∗ � argmax
𝜃

𝐽 (𝜋𝜃 )

Gradient-based methods achieve this by following policies with the
steepest increase in rewards, based on the policy gradient g.

4.1 Importance Sampling
As the policy is changed at every iteration, new samples are col-
lected and samples by older policies would not be reusable. To
overcome this sampling inefficiency, the maximization objective
can be rewritten to use samples from an old policy 𝜋old. Importance
sampling proposes the following surrogate objective, derived from
from Equation (2), to appropriately weight old samples [16]:

𝐽 (𝜋) = E𝜏∼𝜋old

[
𝑇∑
𝑡=0

𝛾𝑡
𝜋 (𝑎𝑡 | 𝑠𝑡 )

𝜋old (𝑎𝑡 | 𝑠𝑡 )
𝐴𝜋old (𝑠𝑡 , 𝑎𝑡 )

]
(6)

since max𝜋 𝐽 (𝜋) = max𝜋 𝐽 (𝜋) − 𝐽 (𝜋old), and the probability ratio
between 𝜋 and 𝜋old alters the advantages appropriately.

4.2 Trust Region Policy Optimization
Optimizing policies by taking updates of the form 𝜃𝑘+1 = 𝜃𝑘 + 𝛼g
may suffer from performance collapse when the learning rate 𝛼
allows for update steps that are too large [5]. Trust Region Policy
Optimization (TRPO) addresses this issue by maximizing 𝐽 (𝜋) over
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a local neighborhood of the most recent policy 𝜋𝜃𝑘 [19]:

max
𝜃

𝐽 (𝜋𝜃 )

s.t.E𝜏∼𝜋𝜃𝑘
[
𝐷KL

(
𝜋𝜃 (𝑠), 𝜋𝜃𝑘 (𝑠)

) ]
≤ 𝜅

(7)

where 𝜋old = 𝜋𝜃𝑘 in Equation (6), 𝐷KL is the Kullback-Leibler (KL)
divergence to measure how different 𝜋𝜃 is from 𝜋𝜃𝑘 , and 𝜅 > 0
is a step size parameter which controls how much the policy is
allowed to change per iteration. The set of policies which satisfy
the constraint is called the trust region. Although the trust region is
determined by approximation, TRPO generally provides monotonic
improvements of the policy throughout the learning process [19].

4.3 Constrained Policy Optimization
In order to restrict the optimization of 𝜋𝜃 with respect to the safety
probabilities defined in (3), the constrained optimization problems
of (5) and (7) are combined as follows

max
𝜃

𝐽 (𝜋𝜃 )

s.t.

𝐽𝐶 (𝜋𝜃 ) ≤ 1 − 𝛿

E𝜏∼𝜋𝜃𝑘
[
𝐷KL

(
𝜋𝜃 (𝑠), 𝜋𝜃𝑘 (𝑠)

) ]
≤ 𝜅

which can be rewritten in terms of expectations based on Equa-
tions (2) and (6) as:

max
𝜃
E𝜏∼𝜋𝜃𝑘

[
𝑇∑
𝑡=0

𝛾𝑡
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 )
𝜋𝜃𝑘 (𝑎𝑡 | 𝑠𝑡 )

𝐴
𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡 )

]

s.t.

𝐽𝐶 (𝜋𝜃𝑘 ) + E𝜏∼𝜋𝜃𝑘

[∑𝑇
𝑡=0 𝛾

𝑡 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃𝑘 (𝑎𝑡 |𝑠𝑡 )𝐴

𝜋𝜃𝑘
𝐶

(𝑠𝑡 , 𝑎𝑡 )
]
≤ 1 − 𝛿

E𝜏∼𝜋𝜃𝑘
[
𝐷KL

(
𝜋𝜃 (𝑠), 𝜋𝜃𝑘 (𝑠)

) ]
≤ 𝜅

(8)

Constrained Policy Optimization (CPO) solves (8) at each iteration
in the learning process, where expectations are estimated with
samples [2]. For high-dimensional policy parameter spaces (e.g.
the weights within neural networks), CPO relies on approximation
of (8), with sufficiently small step sizes 𝜅 , in order to remain compu-
tationally efficient. The objective function 𝐽 (𝜋𝜃 ) and the safety cost
function 𝐽𝐶 (𝜋𝜃 ) are approximated through linearization around
𝜋𝜃𝑘 . The average KL-divergence is approximated by the second
order expansion at 𝜃 = 𝜃𝑘 , for which the KL-divergence and its
gradient are both zero. The local approximation to (8) is then:

max
𝜃

g⊤ (𝜃 − 𝜃𝑘 )

s.t.

𝐽𝐶 (𝜋𝜃𝑘 ) + g⊤𝑐 (𝜃 − 𝜃𝑘 ) ≤ 1 − 𝛿

1
2 (𝜃 − 𝜃𝑘 )⊤H(𝜃 − 𝜃𝑘 ) ≤ 𝜅

(9)

where g is the gradient of the objective, g𝑐 is the gradient of the
safety cost, and H is the Hessian of the expected KL-divergence.
In case the constrained optimization problem is feasible, it can be
efficiently solved using duality, since the problem is convex as H is
always positive semi-definite (and CPO assumes it to be positive-
definite in the following). Letting 𝜆 and 𝜈 denote the Lagrange
multipliers, the dual to (9) can be expressed as

max
𝜆≥0
𝜈≥0

−1
2𝜆

(
g⊤H−1g − 2𝜈g⊤H−1g𝑐 + 𝜈2g⊤𝑐 H−1g𝑐

)
+ 𝜈𝑑 − 𝜆𝜅

2
(10)

where 𝑑 � 𝐽𝐶 (𝜋𝜃𝑘 ) − (1 − 𝛿). The policy update is then defined as

𝜃 = 𝜃𝑘 + 1
𝜆∗

H−1 (g − g𝑐𝜈∗) (11)

with 𝜆∗ and 𝜈∗ as a solution to the dual defined in Equation (10).
For proof of (11), see [2]. However, due to approximation errors
or bad initialization of the policy parameters, CPO may be unable
to find a feasible solution to the dual problem. In such cases, the
policy update of (11) is replaced by the following update

𝜃 = 𝜃𝑘 −
√

2𝜅
g⊤𝑐 H−1g𝑐

H−1g𝑐 (12)

in which no variable associated to the maximization objective is
present, as the update is solely focused on decreasing the constraint
value in order to produce a feasible policy. Finally, CPO applies
backtracking line search to the policy proposal found by (11) or (12)
to overcome the approximation errors in satisfaction of sample
estimates of the constraints.

4.4 Masked Constrained Policy Optimization
By applying CPO, the agent is restricted to learning 𝛿-safe policies
through the safety constraint. The maximization objective, how-
ever, also involves the reward signals obtained upon entering unsafe
states. As shown in section 3, these unsafe rewards redundantly
define the level of safety of the optimal policy, and need to be care-
fully hand-tuned. Hence, we propose a novel approach to exclude
these signals from the maximization objective by using boolean
masking—i.e. to set a value to zero based on a predicate being true
or false. Masked Constrained Policy Optimization (MCPO) defines
a mask on the reward advantage function. First, we will describe
our method for advantages estimated by a Generalized Advantage
Estimator (GAE), which has been shown to provide efficient learn-
ing of highly challenging continuous control tasks [20]. Later in
this section, other advantage estimators are discussed.

4.4.1 Generalized Advantage Estimator. Let 𝐴𝜋 and 𝑉 𝜋 denote the
estimators of the advantage and value functions respectively. The
temporal difference (TD) residual of 𝑉 𝜋 is defined as Δ𝜋

𝑡 � 𝑟𝑡+1 +
𝛾𝑉 𝜋 (𝑠𝑡+1) − 𝑉 𝜋 (𝑠𝑡 ) [21]. Note that Δ𝜋

𝑡 can be considered as an
estimate of the advantage of action 𝑎𝑡 by Equation (1). The GAE-Λ
is then defined as a discounted sum of the TD residuals accumulated
along a trajectory:

𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 ) �
𝑇−𝑡∑
𝑘=0

(𝛾Λ)𝑘Δ𝜋
𝑡+𝑘 (13)

with 0 < Λ < 1 as a parameter that controls the compromise
between bias and variance.

4.4.2 Masking the GAE-Λ. The maximization objective of the con-
strained optimization problem as defined in Equation (8), solely
relies on the expected advantages as feedback from the MDP. There-
fore, our approach relies onmasking the advantage estimator, which
is achieved by two steps. First, the TD residuals based on an unsafe
reward are set to zero. For this purpose, Equation (13) is redefined
as follows:

𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 ) �
𝑇−𝑡∑
𝑘=0

(𝛾Λ)𝑘1(𝑠𝑡+𝑘+1 ≠ 𝑠△)Δ𝜋
𝑡+𝑘 (14)
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Algorithm 1: Masked Constrained Policy Optimization
Input :arbitrary initial policy parameters 𝜃0
for each iteration 𝑘 = 0, 1, 2, ... do

Sample a set of trajectories T = {𝜏} ∼ 𝜋𝑘 = 𝜋 (𝜃𝑘 )
Compute estimate of g based on 𝐴𝜋𝑘 by (14) and (15)
from T

Compute estimates of g𝑐 , H, and 𝑑 from T
if (9) is feasible then

Solve (10) for 𝜆∗
𝑘
and 𝜈∗

𝑘
Compute 𝜃 ′ by (11)

else
Compute 𝜃 ′ by (12)

end
Compute 𝜃𝑘+1 by backtracking line search with 𝜃 ′ as
starting position and satisfying the constraints in (8)
based on T .

Update 𝑅𝜋
𝑖
based on prediction errors (16) from T .

Update 𝑉 𝜋
𝑐 to discounted cumulative costs from T .

end

Secondly, the unsafe reward should be excluded from the expecta-
tion of accumulated future rewards in𝑉 𝜋 . This is not as straightfor-
ward as substituting the reward to zero, as illustrated in section 3.
Let us define the expected reward at time step 𝑡 + 𝑘 , given the
agent was in state 𝑠 at time 𝑡 and selected action 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 ), as
𝑅𝜋
𝑘
(𝑠) � E𝑎𝑡+𝑘∼𝜋 [𝑟𝑡+𝑘+1 | 𝑠𝑡 = 𝑠], and denote its estimator by 𝑅𝜋

𝑘
.

The estimated value function can then be rewritten as the dis-
counted sum of reward estimates:

𝑉 𝜋 (𝑠) =
𝑇 ′∑
𝑘=0

𝛾𝑘𝑅𝜋
𝑘
(𝑠) (15)

with 𝑇 ′ as the upper bound of the time horizon, i.e. 𝑇 ∈ [0,𝑇 ′],
which may be infinite. As 𝑇 is a random variable, the rewards
in the set {𝑟𝑡+𝑘+1 | 𝑇 − 𝑡 < 𝑘 ≤ 𝑇 ′ − 𝑡} are equal to zero. We
now describe how the loss function of each reward estimator is
masked. Let 𝐸𝜋

𝑘
(𝑠) denote the prediction error between the estimate

value 𝑅𝜋
𝑘
(𝑠) and a reward sample 𝑟𝑡+𝑘+1 from a trajectory 𝜏 ∼ 𝜋

where 𝑠𝑡 = 𝑠 holds for 𝑡 . The errors are discarded (i.e. set to zero)
when unsafe state-actions have caused termination without task
completion. The masked prediction error is defined as follows:

𝐸𝜋
𝑘
(𝑠) � 1

(
∀ 𝑙 ≤ 𝑘 : 𝑠𝑡+𝑙+1 ≠ 𝑠△ | 𝑠𝑡 = 𝑠

) (
𝑅𝜋
𝑘
(𝑠) − 𝑟𝑡+𝑘+1

)
(16)

The parameters of the reward estimators are then optimized by
minimizing a loss function based on Equation (16), such as the

mean square error 1
𝑁

∑𝑁
𝑖

1
𝑇𝑖

∑𝑇𝑖
𝑡

[
𝐸𝜋
𝑘
(𝑠𝑡 )

]2
with 𝑁 as the number

of sampled trajectories. The pseudocode of our proposed algorithm
is given in Algorithm 1.

4.4.3 Practical Implementation. Learning all reward estimators
{𝑅𝜋

𝑘
}0:𝑇 ′ would often be infeasible as 𝑇 ′ is large in practice. For

this purpose, we limit the estimation of singular rewards for 𝑛 time
steps, and bootstrap from the value of the state 𝑛 + 1 steps later as
an estimation for the discounted cumulative sum of the remaining
rewards [21]. The value function estimator in Equation (15) can be

rewritten as follows:

𝑉 𝜋 (𝑠) =
𝑛−1∑
𝑘=0

[
𝛾𝑘𝑅𝜋

𝑘
(𝑠)

]
+ E𝑎𝑡+𝑛∼𝜋

[
𝑉 𝜋 (𝑠𝑡+𝑛+1) | 𝑠𝑡 = 𝑠

]
(17)

with 𝑛 ≥ 1. Let 𝑅𝜋𝑛 denote the estimator of the bootstrap term.
While each reward is defined to be estimated by distinct sets

of parameters, using a shared set of parameters would serve as a
more practical approach. For instance, a single neural network with
𝑛 output nodes, each estimating a reward at a different time step,
would share the parameters of all hidden layers.

Furthermore, we note that it may be impractical for the imple-
mentation of MCPO to rely on identification of the unsafe state. A
more efficient approach is to compute (14) and (16) based on the
safety costs of the CMDP, given that 1(𝑠𝑡+1 = 𝑠△) ≡ 1(𝑐𝑡+1 = 1).

4.4.4 Other Advantage Estimators. We now discuss the extension
of our proposed method to the following estimators of 𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 )
(other than GAE), which do not introduce bias in Equation (6) to
estimate the objective [20]:

• �̂�𝜋 (𝑠𝑡 , 𝑎𝑡 ), which can be written as the discounted sum of
reward estimates, equivalent to Equation (15). The predic-
tion errors of reward estimators are masked as described
beforehand.

• �̂�𝜋 (𝑠𝑡 , 𝑎𝑡 ) −𝑉 𝜋 (𝑠𝑡 ), where masking is applied to the predic-
tion errors of the two sets of reward estimators (one defined
by input of state-action, and the other only by state).

• 𝐺𝑡 sampled with 𝜋 , which should be dismissed if the episode
terminated in an unsafe state. Evidently, many samples are
likely to be disregarded when there is high risk in the envi-
ronment. We therefore expect this method to exhibit lower
sampling efficiency compared to other masked estimators.

4.4.5 Limitations. A state 𝑠 can be expressed as highly unsafe for
a policy 𝜋 when the probability of succumbing to a risk, starting
from 𝑠 and following 𝜋 thereafter, is close to one. It could be that
some reward estimators are rarely updated when the likelihood of
unsafe states under 𝜋 is high, due to the masking of the prediction
error. Let {𝑅𝜋

ℎ
} denote the set of such estimators, then the agent

would consistently terminate as a result of risk before ℎ time steps
have passed in a single episode. This can be expressed by:

E𝜏∼𝜋
[
Pr(∃ 𝑙 ≤ ℎ : 𝑠𝑡+𝑙+1 = 𝑠△ | 𝑠𝑡 = 𝑠)

]
= 1 − 𝜀 ⇒ E

[
𝐸𝜋
ℎ
(𝑠)

]
≈ 0

with 𝜀 as a very small number. However, for 𝑙 to exist in the equation
formulated above, the trajectories would have to be sampled from a
policy 𝜋 that is 𝛿 ′-safe with 𝛿 ′ very close to zero. In case the agent
is learning 𝛿-safe policies with 𝛿 > 𝛿 ′, a bad policy update must
have occurred due to approximation errors. The computation of
new policy parameters will not rely on estimates of the advantages,
and therefore the lack of updates of some reward estimators would
have no effect on the new policy update. On the other hand, if the
agent is learning to satisfy safety by a threshold of 𝛿 ≤ 𝛿 ′, the
constraint defined by the CMDP in (5) is satisfied for any policy.
The optimization problem can be solved by standard policy search
methods, and thus we argue that it would be no longer a matter of
safe policy learning.

4.4.6 Performance. MCPO aims to optimize the performance 𝐽▽

defined as the expected return of only the trajectories that were not
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Figure 2: Navigation policies learned after 100 iterations with a random starting position in each episode. A trajectory from
top left (-4.5, 4.5) to bottom right (4.5, 4.5) is sampled from the learned Gaussian policy in a deterministic manner (i.e. by its
mean vector)
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Figure 3: CPO and MCPO in LakeWorld with an unsafe reward signal of -500.

terminated by accessing the unsafe state. The relative difference in
performance between CPO and MCPO therefore depends on the
values of the safety threshold parameter 𝛿 and the unsafe reward
signal 𝑟 △ . For instance, if 𝑟 △ = 0, then CPO could only achieve
𝛿 𝐽▽ of MCPO’s performance in the worst-case where 𝑟 △ deviates
significantly from its appropriate value. Even for high values of 𝛿 (i.e.
the agent is learning to be risk-averse), the loss may be intolerable
due to the critical nature of the performance measure in the specific
application. In the following section, we showcase this performance
difference through means of simulation experiments for different
cases of

〈
𝛿, 𝑟 △

〉
.

5 EXPERIMENTS
We design a set of experiments to assess the capability of MCPO
to learn the optimal 𝛿-safe policy in CMPDs with arbitrary unsafe
reward signals. As part of the analysis, MCPO is compared to CPO
with regard to task performance and safety.

In all experiments, policies are modeled as a multivariate Gauss-
ian distribution. The mean vectors of the actions are optimized as
output nodes of neural networks with two hidden layers of (64,32)
nodes and tanh activation functions. The covariance matrices are
part of the policy parameters to be optimized, although they are

not a function of inputs. For CPO and MCPO, advantages are esti-
mated by GAE-Λ as defined in Equations (13) and (14) respectively.
Furthermore, both algorithms estimate the constraint advantages
by GAE-Λ (13). For MCPO, the 𝑛 = 32 reward estimates (with boot-
strapping) are modeled as 𝑛 output nodes of a neural network that
has the same hidden layer architecture as the policy networks. The
other value functions have equal hidden layer architecture with
one output node. The constraint value function networks have a
sigmoid output activation function. We set the discount factor as
𝛾 = 0.995, the GAE parameter as Λ = 0.95, and the KL-divergence
step size as 𝜅 = 0.01. Per iteration, each learning process consists
of 100 iterations with 5 · 104 time steps. Results are collected from
10 seeds. Our implementation is based on the open source toolkit
garage [7].

We consider experiments of learning 𝛿-safe policies for lower
values of 𝛿 , where the performance difference between CPO and
MCPO is most noticeable. In addition, we want to observe whether
the learning process ofMCPOwould suffer from a high frequency of
masking prediction errors as discussed in section 4.We consider two
continuous control tasks that are easy to interpret: (i) a navigation
task, and (ii) a foraging task.
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Figure 4: CPO and MCPO in LakeWorld with an unsafe reward signal of -5000.
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Figure 5: CPO and MCPO in CoastWorld.
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Figure 6: The environment of the foraging task at the begin-
ning of an episode.

5.1 Navigation Task
In this task, the agent’s goal is to find the shortest path between
starting and goal positions that is 𝛿-safe, in an environment filled
with unsafe areas. Formally, the risk-embedded CMDP defining this
problem is composed of the state spaceS = [−5, 5]×[−5, 5], and the
action space A = [−1, 1] × [−1, 1]. The state is the (𝑥,𝑦) position
of the agent, and the action is the agent’s velocity ( ¤𝑥, ¤𝑦). The agent
is motivated to move to a goal position by defining the reward
function as the negative distance to that goal: 𝑅(𝑠, 𝑎, 𝑠 ′) = −∥𝑠 ′ −
𝑠GOAL∥. The goal is located at 𝑠GOAL = (4.5,−4.5). Transitions from
state 𝑠 by action 𝑎 are deterministic to 𝑠 ′ = (𝑥 + ¤𝑥,𝑦 + ¤𝑦), unless the

agent travels over an unsafe area. Let 𝜌 denote the constant risk
rate, and consider 𝐷 (𝑠, 𝑎) as the distance on unsafe areas that the
agent would cross from 𝑠 with 𝑎. The probability of transitioning to
an unsafe terminal state 𝑠△ is then defined as 𝑃 (𝑠△ | 𝑠, 𝑎) = 1− (1−
𝜌)𝐷 (𝑠,𝑎) . The reward function is extended with transitions to 𝑠△ by
𝑅(𝑠, 𝑎, 𝑠△) = 𝑟 △ , where we refer to the constant 𝑟 △ as the unsafe
reward. We consider two different layouts of the unsafe areas, with
their own configuration of parameters

〈
𝛿, 𝜌, 𝑟 △

〉
. For convenience,

we name the layout of Figures 2(a) and 2(b) as LakeWorld, and that
of Figures 2(c) and 2(d) as CoastWorld.

5.1.1 LakeWorld. Figures 2(a) and 2(b) illustrate the navigation vec-
tor flows learned with a random starting position in each episode.
Trajectories shown from 𝑠START = (−4.5, 4.5) to 𝑠GOAL were sam-
pled from the learned policies. Figure 3 shows the results from
learning processeswith a deterministic starting position (i.e. 𝑠START)
in each episode. The agents learned 𝛿-safe policies with 𝛿 = 0.2,
𝜌 = 0.25 and 𝑟 △ = −500. As the unsafe reward is lower than any
other reward received at a transition, CPO learns to mostly avoid
unsafe areas. Consequently, Figures 3(a) and 3(b) show that CPO
achieves higher returns and lower probability of entering the un-
safe state than MCPO. Note that 𝛿 is illustrated as the horizontal
dashed line in Figure 3(b), which shows that both algorithms are
𝛿-safe. Nevertheless, as the sample trajectories indicate, CPO ac-
tually learns a suboptimal policy of the original task objective (i.e.
finding the shortest path). To illustrate this, we set 𝜌 to zero and
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Figure 7: CPO and MCPO in the foraging task

sample 103 trajectories for the learned policies of each seed. The
average returns for these trajectories, which all resulted in a task
completion, are shown in Figure 3(c). MCPO achieves higher task
performance than CPO, while meeting the constraints.

To further investigate the impact of the unsafe reward signal, we
opt for an even larger negative value: 𝑟 △ = −5000. The samemetrics
are again considered and shown in Figure 4. CPO has become
entirely risk-averse, at the cost of lowering its task performance.
On the other hand, MCPO achieves equal performance to the case of
𝑟 △ = −500. This further indicates that MCPO successfully neglects
the unsafe reward. A comparison of Figures 3(b) and 4(b) shows
how the value of 𝑟 △ determines the probability of taking risks.
Decreasing (increasing) the unsafe reward lowers (raises) the upper-
bound on the risk probability of the policies learned by CPO. Thus,
for CPO to find the policy which optimizes task performance—i.e.
the policy shown in Figure 2(b)—, this upper-bound should be equal
to the risk probability of that optimal policy. This is achieved by
hand-tuning the unsafe reward signal.

5.1.2 CoastWorld. For this CMDP, we set the safety-threshold as
𝛿 = 0.1, the constant risk rate as 𝜌 = 0.33, and the unsafe reward as
𝑟 △ = 0. Navigation vector flows and sampled trajectories are shown
in Figures 2(c) and 2(d) for CPO and MCPO, respectively. In this
case, not only does CPO learn a suboptimal policy, but also one that
is substantially higher than MCPO in risk. Since the unsafe reward
is higher than any other safe reward, CPO learns to maximize risk
(see Figures 5(a) and 5(b)). The average return, in completed tasks,
shows again that MCPO finds a shorter path than CPO. We hope to
showcase with this example that the naive approach of selecting
the unsafe reward as zero [6] should be carefully considered.

5.2 Foraging Task
In this task, the goal for the agent is to collect the 6 highest rewards
out of the 11 placed as patches in a 2D space. Figure 6 shows the
initialization of the environment, where the states and actions are
defined identical to those of the navigation task in 5.1. Upon enter-
ing a patch, the agent either receives a positive reward or terminates
its episode due to a risk for which it is given a reward 𝑟 △ = −500. A
visited patch is immediately removed from the environment for the
remainder of that episode. There are five patches which have no
risk and provide a reward of 10, and five patches {patch𝑖 }0:4 that

are designed with reward 𝑟𝑖 = 100 − 20𝑖 and risk 𝜌𝑖 = 0.5 − 0.1𝑖 . In
addition, a patch with reward 10 and risk 0.92 is included.

Figure 7 shows the results of CPO and MCPO learning for 150
iterations, to find an optimal 𝛿-safe policy where 𝛿 = 0.1. CPO
learns to maximize the sum of rewards involving the unsafe reward
signal (see Figure 7(a)), while MCPO aims to only optimize the
return of trajectories which have successfully completed the task
(see Figure 7(c)). Consequently, MCPO has learned to navigate
towards higher rewards than CPO, while both algorithms rely on
the same safety constraint.

6 CONCLUSIONS
In this paper, we have studied the problem of hand-tuning reward
signals in safe reinforcement learning tasks, where safety is defined
based on the probability of early termination due to unsafe tran-
sitions of the MDP. More specifically, we illustrated how rewards
related to unsafe transitions influence the optimization criterion.
For learning policies that optimize task performance and simultane-
ously guarantee that the probability of succumbing to risk remains
under a given threshold, the unsafe rewards are required to be
carefully selected with expert knowledge. We, therefore, proposed
a novel algorithm called Masked Constrained Policy Optimization
(MCPO), which avoids the burden on task designers to engineer
unsafe reward signals. MCPO neglects these signals by masking the
advantage estimator, which is used to compute the maximization
criterion in the iterative policy improvement algorithm. We derive
our algorithm based on GAE, and additionally discuss a practical
implementation, other advantage estimators, possible limitations,
and the performance difference to CPO. Numerical results for con-
tinuous tasks show that MCPO outperforms CPO in the average
of accumulated rewards, for the episodes that were not terminated
due to risk, when unsafe reward signals are not properly hand-
tuned. Our proposed algorithm would be particularly promising
for tasks whose objective can be achieved only by taking a certain
number of unsafe actions, considering such tasks are preferred to
be performed by replaceable artificial agents instead of humans.
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