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Abstract: Robot swarms have been used extensively to examine best-of-N decisions; however, most
studies presume that robots can reliably estimate the quality values of the various options. In an
attempt to bridge the gap to reality, in this study, we assume robots with low-quality sensors take
inaccurate measurements in both directions of overestimating and underestimating the quality of
available options. We propose the use of three algorithms for allowing robots to identify themselves
individually based on both their own measurements and the measurements of their dynamic neigh-
borhood. Within the decision-making process, we then weigh the opinions of robots who define
themselves as inaccurately lower than others. Our research compares the classification accuracy
of the three algorithms and looks into the swarm’s decision accuracy when the best algorithm for
classification is used.

Keywords: robot swarm; collective decision-making; collective perception; best-of-N problem

1. Introduction

Collective decision making is a wide-spread phenomena across both natural [1–3] and
artificial systems [4–6]. In artificial systems, it has been intensively studied in the context of
robot swarms, where a group of robots needs to establish an agreement while performing a
particular task. For robot swarms, a large number of collective decision-making problems
are defined in the form of consensus [7,8], in which robots must agree on one of the available
options. For a finite and discrete set of options, the problem is formulated as a discrete
consensus problem. Nevertheless, when the quality of the options varies, the problem
becomes a best-of-n problem [9,10]. In best-of-n problems, robots are supposed to explore
their environment looking for the available options, and measuring their quality values in
a phase known as the exploration phase. The exploration phase is typically followed by
an exploitation phase in which robots interact with their local neighborhoods to exchange
their measurements and/or opinions and attempt to reach an agreement by following a
particular voting approach. Many works have focused on consensus achievement in best-of-
N decisions. In [11], the authors contributed a literature review on design methodologies in
collective decision-making problems, in which they discussed best-of-N decisions in terms
of option quality and cost. In [12], the authors investigate the impact of the population
size and the number of options on the consensus speed in best-of-N decisions. In [13],
the authors consider Byzantine robots in best-of-N decision problem. Robot can show
arbitrarily faulty behavior or malicious behavior. The authors of [14] investigate the
relative time invested by swarm individuals in option discovery and in signaling behaviors
when generalizing the best-of-N problems to consider N > 2 options. Finally, the work
presented in [15] paves the way for exploiting Bayesian algorithms to design collective
decision making in robot swarms. The authors design a Bayesian algorithm to help robots
judge the spatial distribution of a particular feature in a 2D environment. They show,
by means of the accuracy-speed trade-off, that robots with fewer observations can help
improve decision accuracy by reducing spatial correlations. In general, Bayesian algorithms
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for decision making in robot swarms can be a promising approach to deal with faulty
measurements. Despite the large number of works focusing on consensus achievement
in collective decision-making problems, very few assume individual perception flaws—
i.e., errors while measuring the quality of the discovered options. As perception is the
foundation of cognition since it provides the necessary input for the decision-making
processes [16–18], perceptional errors may result in wrong decisions. In our study, robots’
perceptional errors occur in two forms: (i) perceiving a higher quality value or (ii) perceiving
a lower quality value of a discovered option.

We assume a robot swarm that consists of three populations: accurate robots, overes-
timating robots, and underestimating robots. The overestimating robots are robots those
for which their sensors generate erroneous measurements by increasing the quality value
of the encountered option. On the contrary, underestimating robots are robots for which
their sensors generate erroneous measurements by decreasing the quality value of the
encountered option. Such inaccurate measurements can result from noisy sensor inputs,
robot’s malfunctioning logic, or intended intrusions [19,20].

We consider a site selection problem as our best-of-n problem. In a site selection
problem, robots need to select the best site (option) out of n sites (in our case n = 2). Sites
are implemented in a 2D physical environment, in which robots explore and come back to
a shared area referred to as the nest in order to communicate their findings and attempt to
reach a consensus on the best site. The two sites (A and B) are assumed to have numeric
qualities γ(l), l ∈ {A, B}. In this study, we aim to investigate the following research
questions: (i) are robots able to classify themselves in terms of their measuring accuracy;
(ii) which of the classifying algorithms performs best; and (iii) are robots able to achieve
consensus under erroneous measurements? Moreover, in the case of a consensus, what is
the chance of converging to the best option?

The behavior of the robots is designed as a combination of a basic and an extended
model. The basic models describes robot exploration and exploitation behaviors, whereas
the extended model describes the different algorithms used by the robots to classify them-
selves in terms of their measuring accuracy and to marginalize the opinion of non-accurate
robots. Our results report the classification accuracy of the three suggested algorithms for
different swarm sizes and different population compositions for a particular size. We also
investigate the accuracy of the resultant collective decision for two cases: (a) Measurement
errors can occur at one site (here site B), and (b) measurement errors can occur at both
sites A and B, when robot uses classification vs. no classification. Our results highlight
the cases when classification has a clear impact on the accuracy of the swarm’s decision.
Finally, our findings highlight the model parameters to which the classification algorithm
is highly sensitive.

2. The Robot’S Basic Behavioral Model

In this section, we present the microscopic model used by the robot to discover new
sites, evaluate them, share this information, and make a vote (i.e., an opinion) by fusing the
robot’s measurements with the information received from its neighbors. Figure 1 shows a
state machine of the robot’s behavior. Robots start in the “leave nest” state and leave the
nest to visit the “explore” state, which enables robots to look around for new sites.

Return to 
nest and 

disseminate
Explore

(take M measures)
Leave nest

Nest NestSite

Figure 1. Robot’s behavior described as a finite state machine.
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As soon as a robot encounters site l ∈ {A, B}, it starts evaluating the site’s quality by
taking ξ measurements, where a measure is sampled as follows:

γi(l) ∼ Gaussian(µl , σl) (1)

µl = Vl + δl , where Vl is the actual quality value of the site and δl is the robot’s erroneous
parameter—a configurable parameter. δl is zero for accurate robots and a positive (negative)
real number for overestimating (underestimating) robots. σl is the standard deviation of the
measurement distribution. The robot starts leaving the site as soon as it has collected its ξ
measurements. The measurements are sampled with a time difference of ∆sample, which allow
the robot to change location and measure a far-enough position. Robots apply a combination
of behaviors, and the nest is marked with lights; hence, the robots apply a combination of
antiphototaxis/phototaxis and obstacle avoidance behavior to leave and return to the nest.

When the robot reaches the nest, it transits to the “disseminate” state. This state consists
of two phases: (i) a mix-up phase and (ii) a communicate phase. In the mix-up phase, the
robot performs a random walk in the nest for a predefined period θmix to avoid clusters of
robots with the same opinion to build up—i.e., these are robots returning from the same
site which they have visited in the last exploration trip. When θmix is over, the robot starts
communicating its measurements of the quality of the site that it has visited in its last
exploration trip while continuing its random walk in the nest. Preserving the random walk,
enables robots to change their local neighborhood and helps to further mix up the swarm
and accelerates the spread of information [21,22].

When disseminating, the robot sends a message that includes two pieces of informa-
tion: (i) the site it is committed to (at the beginning, this is the site the robot has visited
during its last exploration trip), and (ii) the quality value estimated by the robot using its ξ
measurements that it has taken when visiting the site. The robot receives information from
its neighborhood messages of the same structure and uses these messages to compute the
average quality value of each of the two sites as follows:

γ(l) =
1
Nl

Nl

∑
j=1

γj(l), (2)

where Nl is the number of the robot’s neighbors who have visited site l ∈ {A, B} during
their last exploration trip. Afterwards, the robot compares the average values computed
using in Equation (2) for the two sites as ∆γ = |γ(A)− γ(B)|. We introduce parameter ε
as a configurable threshold for the evaluation bias (ε equal for both sites):

• In case ∆γ ≤ ε, which means that the difference in the sites’ qualities is negligible, the
robot adapts the opinion of the majority in its neighborhood. Additionally, the robot
updates the quality value of the site it has committed to with the average γ(l), where
l ∈ {A, B} is the site chosen by the majority in the robot’s neighborhood. Finally, the
robot keeps track of the quality of the site it has not chosen by saving it average quality.

• In case ∆γ > ε, which means that the difference in the sites’ qualities is distinguishable,
the robot commits to the site with the higher quality value. Additionally, it updates
the quality value of both sites using the averages computed in Equation (2).

• In the case where only one site is communicated in the robot’s neighborhood, the
robot commits to that site and updates its quality value using Equation (2).

One final condition needs to be verified before a robot can update its opinion using its
social network: This is having the neighborhood size above a given threshold Nmin. This
condition is exploited to improve the accuracy of γ(l) for each of the available sites. It
mitigates the side effects of an asynchronous start of the dissemination phase, which may
introduce a rapid switch in the opinion of the robots.



Appl. Sci. 2022, 12, 2975 4 of 12

3. The Extended Robot’S Behavioral Model

We extend the basic behavioral model by adding a classification state, as in Figure 2.
This state is used by the robots to classify themselves as belonging to one of the three
populations: accurate, overestimating, or underestimating. The robots access this state
after returning to the nest and spending θmix in performing a random walk to mix up
robots arriving from each site. It also occurs before transiting to the dissemination state.
Hence, when the robots access the dissemination state, there is a high likelihood that they
have already classified themselves. Robots exploit the classification process to assign a
higher weight to opinions shared by accurate robots in comparison to those shared by
overestimating/underestimating robots, aiming to improve the quality of the decision-
making process. Finally, we propose that when the number of interactions exceeds a
predefined threshold ζ, robots from any population shift their classification to accurate.
The reasoning behind this heuristic is that if a large enough sample of opinions is combined
with larger weights awarded to accurate robots, the opinion will eventually trend toward
accuracy.

Return to nest 
and 

classify myselfExplore
(take M measures)

Leave nest

Nest NestSite

Disseminate

Figure 2. The extended robot’s behavioral model described as a finite state machine.

Initially, when entering the classification state, all robots classify themselves as “un-
known”. This classification is shared with the robot’s neighborhood, and it helps to filter
out the opinion of the sender, when it has not classified itself yet. The classification state
lasts for θclassi f y to grant robots enough time to classify themselves. In this study, we
propose different algorithms for robots to classify themselves. In the following, we describe
the used algorithms, and we compare them in terms of their classification accuracy.

• The distance-based algorithm: Following this algorithm, at each time step the robot
collects the quality values measured by its neighbors who have visited the same site.
It calculates the difference between the quality it has measured and the neighbors’
measurements, which is referred to as distance λij. λij is the difference between the
measure taken by robot i and its neighbor j of the same site.

λij(l) = |γi(l)− γj(l)| where l ∈ {A, B}. (3)

Robot i stores the computed distance λij paired with the ID of the sender (i.e., robot
j). Robot i repeats this computation and stores the distances for all its neighbors who
have visited the same site. Storing sender IDs helps the robot to avoid considering the
same sender more than once.
When the θclassi f y period is expired, every robot has a record of all the neighbors it met
during θclassi f y and who measured the quality of the same site. It exploits this record
to compute the average distance between its own measurement and the neighbors’
measurements—i.e., how far the robot’s measurement is from its neighbors’ one on
average—as follows:

λ(l) =
1
Nl

Nl

∑
j=1

λij, (4)

where Nl is the number of neighbors robot i encountered during θclassi f y and who
have visited the same site as robot i.
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In order for robot i to classify itself, it checks average distance λ against a given range
[−δl/2, δl/2]:

– λ(l) ∈ [−δl/2, δl/2]: Robot i considers itself as an accurate robot;
– λ(l) < −δl/2: Robot i considers itself as an underestimating robot;
– λ(l) > δl/2: Robot i considers itself as an overestimating robot.

A clear downside of the distance-based approach is the need for global knowledge
(i.e, the parameter δl) to be shared at the individual level.
Differently from the distance-based algorithm, the following two algorithms enable
robots to reconstruct the distribution of the quality values of the two sites and by
relying on local information. Similarly to the distance-based algorithm, during the
period of θclassi f y, robot i collects the quality values measured by its neighbors who
have visited the same site. Robot i then exploits these measurements to predict the
quality distribution of that particular site. The two investigated algorithms are as
follows:

• The k-means clustering algorithm: K-means clustering is a clustering algorithm that
aggregate data in k groups based on specific similarities [23]. The parameter k tells
the algorithm in how many clusters to split the data points. In our study, we have
three populations; hence, we set k = 3 and this piece of information is known by
individual robots. The k-means algorithm initializes the means of the three clusters
using the data collected during the period of θclassi f y. This divides the range of the
collected data evenly by using the minimum dmin and the maximum dmax of the
collected data as follows.

µ1 = dmin + (dmax − dmin)/2

µ2 = µ1 + (dmax − µ1)/2

µ3 = dmin + (µ1 − dmin)/2

The algorithm loops over the quality values collected by the robot and assigns each
value to the cluster for which its mean has the smallest absolute distance to that value.
Once the algorithm has looped over all collected values, it recomputes the means
of the three clusters by using the average value over the added data. It repeats this
procedure until the means of the three clusters stop to change or until a predefined
number of iterations is reached.
Afterwards, robots use the generated distribution with the three clusters to clas-
sify themselves, i.e., accurate if their opinion belongs to the cluster in the middle,
overestimating if their opinion belongs to the cluster with the largest mean, and un-
derestimating if their opinion belongs to the cluster with the smallest mean. The one
clear downside of the k-mean algorithm is the prerequisite of parameter k—i.e., robots
need to know upfront the number of populations. Additionally, when setting, e.g.,
k = 3, the algorithm will cluster the data in three groups, even when less populations
are present. To handle this downside, we introduce in the following—the DBSCAN
clustering algorithm.

• The density-based algorithm for discovering clusters (DBSCAN): This algorithm [24]
iterates over all values collected by the robot during the period of θclassi f y. For each
value, it creates an adjacent list that includes all other values for which its distance to the
considered value is less than a configurable parameter ρ. The generated adjacent lists
represent potential distribution clusters. Once this is performed, the algorithm iterates
over each value that is not classified yet and assigns it—and recursively the members of
its adjacent list—to the proper cluster. Values that do not have an adjacent list of at least
Amin values are considered as noisy data points and, hence, ignored.
Since DBSCAN generates data clusters with no a prior knowledge on the number of
clusters, it may output a more accurate number of clusters than the k-mean algorithm.
However, when the number of generated clusters is one or two, it becomes challenging
for the robots to classify themselves. In case of three clusters, the robots for which its
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opinions belong in the middle cluster classify themselves as the accurate ones. While
robots’ whose opinions belong in the cluster with the largest(lowest) mean classify
themselves as overestimating(underestimating). When DBSCAN outputs more than
three clusters, robots classify themselves as accurate as long as their opinions do not
belong in the most-left (cluster with the lowest mean) or most-right(cluster with the
largest mean) clusters. The choice of parameters ρ and Amin plays a key role in the
performance (e.g., the accuracy) of the DBSCAN algorithm.

4. Simulations

The simulated environment consists of a 2D arena divided into three regions: two sites
(A and B) and a nest in the middle of the two sites. Figure 3 shows a snapshot of the arena
in which the best-of-n decision problem is implemented. We add lights above the nest in
the middle of the arena to enable robots to use phototaxis and antiphototaxis behaviors
while navigating form and towards the nest.

Figure 3. Snapshot of the site selection arena in ARGoS environment.

As mentioned in the robot’s basic and extended behavioral models and illustrated in
both Figures 1 and 2, all robots start in the exploration state and with no commitment to any of
the two sites (options). They leave the nest to explore the arena by performing antiphototaxis
behavior. Robots use random walks [25] to search for the different sites. Once a robot
encounters a site, it starts inspecting its quality value γi(l) by taking ξ measurements. After
that, the robot exploits phototaxis behavior to navigate back to the nest. In the nest, robots
communicate the information they have collected in order to achieve a consensus optimally
on the site with the highest quality value. Our experiments are divided in two main sets: (i) In
the first set, we enable measurement errors to occur at Site A (red) only, and (ii) we enable
measurement errors to occur at both sites A and B. This can be mapped to real scenarios where
the sites are characterized with specific access conditions.

We have performed a set of preliminary experiments to finetune the parameter values
of the basic behavioral model. Table 1 holds the used values.

As the accuracy of the classification algorithm does not change by varying the number
of sites at which robots may obtain erroneous measurements, we examine the accuracy of
the classification algorithms using the following set: (i)—errors in measurements can occur
at site A only. Differently, investigating the accuracy of the emergent swarm’s decision may
depend on the number of sites where inaccurate measurements can occur. Therefore, we
consider both sets (i) and (ii) of experiments when examining the accuracy of the collective
decision under both conditions of using a classification algorithm vs. no classification. For
this investigation, we select the classification algorithm that results in the best accuracy.
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Table 1. The selected parameter values for both the basic and extended behavioral models.

µA mean of quality value of site A 20× 102

µB mean of quality value of site B 25× 102

σl∈{A,B} standard deviation of quality value of sites A and B 2× 102

δl∈{A,B} robot’s erroneous parameter for sites A and B 5× 102

ξ minimum number of robot’s on-site measurements 50
ε parameter used to differentiate between a symmetric and a non-symmetric decision 50
Nmin minimum number of neighbors required by the robot to update its opinion 5
θmix period used to mix up robots in nest after exploration and before dissemination 1250 ts
θclassi f y period used to collect data by the robots as input for their classification algorithm 1250 ts
ζ a robot’s interaction threshold after which robots from any population shift their classification to accurate 50

5. Results
5.1. Classification Accuracy

In this section, we investigate the classification accuracy of the three algorithms by
applying the extended model presented in Section 3. Each of these algorithms enables
robots to classify themselves as accurate, overestimation, or underestimating after exploring
site A. For Site B (as mentioned in experiments set (i)), all robots measure the site’s quality
accurately. That is γi(l) ∼ Gaussian(µl , σl), where µl = ψl + δl and δl = 0.

We investigate four swarm sizes for each algorithm: 210, 150, 90, and 30 robots. For
a swarm size of 210, we examine different population configurations, shifting from one
dominant population to equal populations (see Table 2).

Table 2. The different swarm sizes and population configurations used to examine the classification
accuracy of the three proposed algorithms.

Swarm Size Population Composition Distance-Based k-Means DBSCAN
70 A, 70 U, 70 O 99% 71.5% 98%
90 A, 90 U, 30 O 90.5% 71% 89.5%
90 A, 30 U, 90 O 99.5% 70.5% 90.5%
30 A, 90 U, 90 O 99% 70% 82.5%

210 robots 105 A, 105 U, 0 O 46% 46% 75%
105 A, 0 U, 105 O 95% 46% 75%
0 A, 105 U, 105 O 99% 71% 50%

210 A, 0 U, 0 O 99.5% 42% 100%
0 A, 210 U, 0 O 49.5% 35.5% 50%
0 A, 0 U, 210 O 50% 36% 50%

150 robots 50 A, 50 U, 50 O 97.5% 71% 94%
90 robots 30 A, 30 U, 30 O 85.5% 69% 79.5%
30 robots 10 A, 10 U, 10 O 40.5% 57% 68%

For the distance-based algorithm, our findings show that the system is highly sensitive
to variations in swarm size with R2 = 0.78 as the goodness of linear fit. This decrease can be
explained by a decrease in neighborhood size, which impacts the size of the measurements
sample used by the robot to decide which population it belongs to. For large swarm sizes
(210 in our simulations), the algorithm’s accuracy declines only when a single population
of robots participates in the site selection task, unless it is the population of accurate robots.
Surprisingly, when two populations are recognized, the distance-based approach remains
accurate in the majority of cases. We believe that maintaining such an accurate classification
is due to the use of global knowledge of parameter δl by individual robots.

For the k-means algorithm, we set k = 3 for all experiments, and the maximum number
of iterations is set to 100. In general, k-mean performs less accurately than the distance-
based algorithm. Its accuracy drops specifically when the swarm has two or less robot
populations. The reason for this low performance is that the acquired data are forced
to be dispersed in three clusters (k = 3), regardless of the actual number of populations.
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Classification accuracy shows linear decline with a swarm size with R2 = 0.74 as the
goodness of linear fit.

For the DBSCAN, we set Amin = 3 and ρ = 50 (the threshold used to build the
adjacent list) for all experiments. If rho is set too small, it becomes difficult in small swarms
to encounter measurements that are within rho distance from each other; similarly, if rho
is set too large, it becomes difficult to map the collected data to the correct number of
populations. DBSCAN classification accuracy decreases anytime the accurate population is
minor or absent, as in this case, robots that are not accurate classify themselves as accurate.
Thus, when the swarm is composed of two populations or less, DBSCAN performs well
only when the accurate population is one of the swarm populations, and the majority
of robots belong to that population. Finally, DBSCAN classification accuracy decreases
linearly with swarm size, with R2 = 0.96 as the goodness of linear fit.

5.2. Consensus Accuracy
5.2.1. Experiments Set I: Measurement Errors Can Occur Only at Site A

For this set of experiments, we select the swarm size of 210 robots. Figure 4 depicts
the evolution of collective decision over time for the configuration of equal populations—
i.e., {70, 70, 70}. In Figure 4a, we show the results when the basic behavioral model is
applied, while in Figure 4b, we show the results when the distance-based algorithm for
robot classification is used (when the extended model is applied). We select the distance-
based algorithm as it is the one with the highest performance in terms of classification
accuracy for most swarm configurations. When using the distance-based algorithm, the
opinions exchanged are weighed based on the robot’s class, i.e., the opinion of a robot
that has classified itself as accurate weighs twice higher than an opinion of a robot that
has classified itself differently. As we can see from Figure 4a,b, the speed to achieve a
consensus drops when applying the distance-based algorithm (approximately 4000 vs.
approximately 5500 ts). This is due to the time spent by the robots in the classification
phase (see Figure 2). In terms of decision accuracy, the basic behavioral model was able
to achieve 66.67% decision accuracy without exploiting any robot classification, whereas
the distance-based algorithm achieved 77% decision accuracy with the help of classifying
robots and assigning a higher weight to the opinion of accurate robots.

(a) (b)

Figure 4. The emergence of the collective decision: (a) when robots follow the basic behavioral model
and (b) when robots classify themselves using the distance-based algorithm. We simulate a swarm of
70 objective, 70 underestimating, and 70 overestimating robots. Errors in measurements can occur at
site A (red) only.

Next, we examine the accuracy of the collective decision for different compositions of
the swarm of 210 robot. The results are reported in Table 3 as the percentage at which the
swarm committed to any of the two sites. Site B (green) has a higher quality value than
site A (red), as we can see in Table 1. As we can notice from the results summarized in
Table 3, for both the basic behavioral model and the distance-based algorithm, the swarm
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converges on the site with the highest quality value (i.e., site B) in one of the following
cases: (a) the overestimating population is absent; hence, no robots will overshoot the
quality value of site A and, therefore, site B, which has in fact a higher quality value
that dominates. (b) The overestimating population is smaller than the summation of the
underestimating and the accurate populations. In such cases, the decision accuracy drops
in comparison to (a); however, it stays above 50% for both approaches (with and without
classification). For the cases that we tested and where the overestimating population is
larger than the summation of the underestimating and accurate populations, the distance-
based algorithm outperformed the basic behavioral model in terms of decision accuracy
and stays about 50%.

Table 3. Comparing the accuracy of consensus accuracy when using the basic behavioral model vs.
the distance-based algorithm for different swarm compositions. Errors in measurements can occur
only at site A (red).

Population Composition Basic Model Distance-Based Algorithm
% Site A % Site B % Site A % Site B

105 A, 105 U, 0 O 0% 100% 0% 100%
210 A, 0 U, 0 O 0% 100% 0% 100%
0 A, 210 U, 0 O 0% 100% 0% 100%

30 A, 120 U, 60 O 30% 70% 46% 54%
70 A, 70 U, 70 O 33.33% 66.67% 23% 77%
60 A, 120 U, 30 O 43% 57% 50% 50%
105 A, 0 U, 105 O 46% 54% 50% 50%
90 A, 90 U, 30 O 46.66% 53.34% 26% 74%
60 A, 30 U, 120 O 53% 47% 40% 60%
0 A, 105 U, 105 O 73% 27% 46% 54%

5.2.2. Experiments Set II

In this set of experiments, we allow measurement errors to occur at both sites (A and
B)—i.e., a robot belongs to a particular population e.g., the overestimating population will
overestimate the quality value of any site it visits during its exploration trip.

Figure 5 depicts the evolution of collective decision over time for the configuration
of equal populations—i.e., {70, 70, 70}. In Figure 5a, we show the results when the basic
behavioral model is applied, while in Figure 5b, we show the results when the distance-
based algorithm for robot classification is used (when the extended model is applied). As
we can observe, the difference is minor between these results and the ones obtained when
measurement errors were allowed only at site A. One remarkable difference (especially
in the case (a) of the basic model) is a smaller standard deviation around the number of
committed robots. This results from enabling the entire swarm to measure with errors,
hence contributing to a larger sample of the random variable—i.e., the quality measure.
Another difference is the faster convergence time of the collective decision in comparison
to the case when errors were allowed only at site B only. Similarly, the speed to achieve a
consensus drops when applying the distance-based algorithm due to the time spent by the
robots in the classification phase. In terms of decision accuracy, the basic behavioral model
was able to achieve 64% decision accuracy without exploiting any robot classification,
whereas the distance-based algorithm achieved only 60% decision accuracy.

Next, we examine the accuracy of the collective decision for different compositions
of the swarm of 210 robot. The results are reported in Table 4 as the percentage at which
the swarm committed to any of the two sites. Different from the case where the measure-
ment errors were only enabled at site A (red), when these are allowed at both sites, the
results summarized in Table 4 show an improvement in the decision accuracy for simi-
lar population compositions. The improvement is observed particularly when using the
basic behavioral model. This counterintuitive result can be explained as the population
evaluating site A splits into overestimating, underestimating, and accurate instead of only
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accurate. Hence, both the parts of accurate and underestimating will reinforce the commit-
ment to site B instead of site A, contributing to the shift of the collective decision to the
higher-in-quality site—i.e., site B.

(a) (b)

Figure 5. The emergence of collective decision: (a) when robots follow the basic behavioral model,
and (b) when robots classify themselves using the distance-based algorithm. We simulate a swarm
of the following: 70 objective, 70 underestimating, and 70 overestimating robots, where Errors in
measurements can occur at both sites A and B.

Table 4. Comparing the accuracy of consensus accuracy when using the basic behavioral model vs.
the distance-based algorithm for different swarm compositions. Errors in measurements can occur at
both sites A and B.

Population Composition Basic Model Distance-Based Algorithm
% Site A % Site B % Site A % Site B

105 A, 105 U, 0 O 7% 93% 16% 84%
210 A, 0 U, 0 O 0% 100% 0% 100%
0 A, 210 U, 0 O 0% 100% 0% 100%

30 A, 120 U, 60 O 33% 67% 63% 37%
70 A, 70 U, 70 O 36% 64% 40% 60%
60 A, 120 U, 30 O 23% 77% 53% 47%
105 A, 0 U, 105 O 7% 93% 33% 67%
90 A, 90 U, 30 O 57% 43% 46% 54%
60 A, 30 U, 120 O 20% 80% 30% 70%
0 A, 105 U, 105 O 47% 53% 60% 40%

Finally, our results show a high sensitivity of the distance-based algorithm to parame-
ter ζ. ζ is used as a lower-bound of number of interactions, above which a non-accurate
robot starts to classify itself as accurate. In order to illustrate the role of parameter ζ,
we run the decision experiment after disabling the use of this parameter. Consequently,
overestimating and underestimating robots do not have the chance to classify themselves
as accurate at any time of the experiment. Furthermore, opinions of overestimating or un-
derestimating robots are weighted by zero, and only opinions of robots who have classified
themselves as accurate are considered. In order to be able to apply this approach, we need
the accuracy of the classification to be high enough. Therefore, we consider the population
composition of {70, 70, 70} as the classification accuracy for this composition using the
distance-based algorithm as 99% (see Table 2). Our results show an increase in the accuracy
of the swarm decision from 60% of 100%, revealing the critical role of the parameter ζ in
spreading inaccurate measurements across the swarm.

6. Conclusions

In this study, we have investigated the emergence of collective decisions in best-of-N
problems, when robots are subject to perception errors. Most works which investigated
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best-of-N decisions in robot swarms assumed robots to perform accurate quality measure-
ments of the available options. Nevertheless, reality diverges from this assumption as real
robots are mostly associated with perception errors. Taking that into consideration, we
have proposed three algorithms to help robots classify themselves into one of the three
populations: overestimating, underestimating, and accurate. These populations can be
mapped to robots in real scenarios with high-quality sensors vs. low-quality sensors. The
algorithms we have exploited are as follows: (i) the distance-based algorithm, (ii) the
k-means algorithm, and density-based algorithm for discovering clusters (DBSCAN).

We have compared the performance of the three algorithms in terms of their classi-
fication accuracy using different swarm sizes and various population compositions. Our
results showed that classification accuracy drops with decreasing swarm size; also, for a
specific size, the different population compositions play a key role in the resultant classi-
fication accuracy. In general, the distance-based algorithm performed best in regards to
classification accuracy across the different swarm sizes and compositions.

After testing the classification accuracy of the three algorithms, we selected the best-
performing algorithm and tested the accuracy of the collective decision when using classifi-
cation (the distance-based algorithm) vs. no classification (the basic behavioral model). We
have examined the decision accuracy for two cases: (a) measurement errors can occur at
one site (here site B), and (b) measurement errors can occur at both sites A and B. When
measurement errors are allowed at site B only (the site with the highest quality value),
overestimating robots or accurate robots need to represent the majority of the swarm
to converge with a high likelihood at the best option (i.e., site B). Moreover, using the
distance-based algorithms by the robots to classify themselves results in a higher decision
accuracy than when no classification is used. For the case where measurement errors were
allowed at both sites, using the distance-based classification algorithm drops the decision
accuracy below the one resulting from the basic behavioral model. These counterintuitive
results can be explained as the population evaluating site A splits into overestimating,
underestimating, and accurate instead of only accurate. Hence, both the parts of accurate
and underestimating will reinforce the commitment to site B instead of site A, contributing
to the shift of the collective decision to the higher-in-quality site. Our study sheds light on
the realistic assumption of measurement errors while the robots evaluate their environment
to make best-of-N decisions.
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