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Increased fragmentation caused by habitat loss represents a major threat to
the persistence of animal populations. How fragmentation affects popu-
lations depends on the rate at which individuals move between spatially
separated patches. Whereas negative effects of habitat loss on biodiversity
are well known, the effects of fragmentation per se on population dynamics
and ecosystem stability remain less well understood. Here, we use a spatially
explicit predator–prey model to investigate how the interplay between frag-
mentation and optimal foraging behaviour affects predator–prey interactions
and, subsequently, ecosystem stability. We study systems wherein prey
occupies isolated patches and are consumed by predators that disperse fol-
lowing Lévy random walks. Our results show that the Lévy exponent and
the degree of fragmentation jointly determine coexistence probabilities. In
highly fragmented landscapes, Brownian and ballistic predators go extinct
and only scale-free predators can coexist with prey. Furthermore, our results
confirm that predation causes irreversible habitat loss in fragmented land-
scapes owing to overexploitation of smaller patches of prey. Moreover, we
show that predator dispersal can reduce, but not prevent or minimize, the
amount of lost habitat. Our results suggest that integrating optimal foraging
theory into population and landscape ecology is crucial to assessing the
impact of fragmentation on biodiversity and ecosystem stability.
1. Introduction
Loss of habitat presents a major threat to global biodiversity [1] and typically
leads to fragmented landscapes that contain smaller and more spatially isolated
patches in which local extinctions are more likely to occur [2,3]. While ecologists
agree that habitat destruction, and the subsequent increase in habitat fragmen-
tation, affects biodiversity negatively [4], the potential effects of fragmentation
per se on population densities and species’ persistence are much less understood
[5,6]. As it is known that fragmentation per se induces changes in demographic
rates and drifts in population genetics [7], it is critical to assess its effects on
population dynamics and ecosystem stability.

Fragmentation per se (hereafter, fragmentation) describes changes in the
spatial habitat configuration without significant habitat loss [8]. Theoretical
and experimental studies indicate that fragmentation can result in larger
species’ extinction probabilities, as small patches sustaining small populations
are more sensitive to demographic fluctuations [8]. By contrast, fragmentation
might also favour species’ persistence by increasing immigration rates, patch
connectivity and the diversity of habitat available within a smaller area (for a
review, see [9]). Therefore, whether, and how, fragmentation impacts species’
persistence strongly depends on the spatial configuration of the landscape
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Figure 1. (a) Fragmented landscapes of prey habitat used in our model
implementation with L = 512 and ρ = 0.2. The degree of fragmentation
increases with the Hurst exponent H. Black and white regions depict prey
habitat and matrix, respectively. (b) Normalized maximum patch size xmax
for different H versus habitat density ρ (electronic supplementary material).
(c) Percolation probability p as a function of ρ (electronic supplementary
material). The dotted vertical line indicates the habitat density ρ = 0.2
below the percolation threshold (p≈ 0) used in our experiments.
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[10,11] and the dispersal behaviour (i.e. movement between
fragments) of individual organisms [12,13]. Despite the inter-
play between landscape structure and individual movement
being essential for understanding population dynamics,
research on each of these fields has progressed mostly inde-
pendent from one another [14,15]. As a result, a general
framework to investigate how fragmentation, movement
behaviour and demographic rates jointly determine species’
persistence is lacking.

On the one hand, studies on individual movement are
often grounded in optimal foraging theory [16]. These studies
investigate foraging behaviour on short time scales and
most often neglect demographic events and evolutionary pro-
cesses (but see [17]). Instead, they examine how individual
movement behaviour defines search times and study corre-
lations between foraging efficiency and resource density
[18]. Often, movement is modelled using scale-free random
searches, known as Lévy walks, in which displacement lengths
are sampled from power laws with varying exponents [19].
This particular choice for the distribution of displacement
lengths is based on empirical observations reporting scale-
free patterns in the movement of different species [20–24].
Although these patterns in displacement lengths might
be recapitulated both by memoryless Lévy searchers
and by area-restricted foragers, we consider here the former
because they provide a simple mathematical framework to
explore how individuals balance the exploration–exploitation
trade-off underlying search processes [25]. In general, Lévy
walks are a very efficient random foraging strategy in
sparse resource landscapes [26–29], including fragmented
landscapes [30,31].

On the other hand, studies on population dynamics con-
sider longer time scales and often assume simplified
individual movement [32–35]. Few studies have integrated
optimal foraging behaviour in population-based models
[14,36] and, to the best of our knowledge, only Dannemann
et al. [37] have studied population dynamics in a system of
optimal foragers while considering fragmented prey habitats.
The study, however, mostly controlled for habitat availability
and did not systematically investigate how the complex
spatial distributions of habitat as observed in natural land-
scapes impact population dynamics. Here, we extend the
framework proposed in [37] and scrutinize these effects
using techniques from landscape ecology that allow us to
generate lattices with precise levels of fragmentation [38,39].

To study the interplay between optimal forager move-
ment, fragmentation and demographic rates, we develop a
stochastic, spatially explicit predator–prey model in fragmen-
ted landscapes. Fragmentation restricts prey individuals to
inhabit spatially separated fragments, whereas predators are
assumed to display natural (optimized) foraging behaviour
and disperse following a Lévy walk. By varying habitat frag-
mentation and predator movement, we quantitatively
examine the effects of dispersal on ecosystem stability in frag-
mented landscapes.
2. Stochastic predator–prey model in
fragmented landscapes

We develop a stochastic predator–prey model in a two-
dimensional landscape with a fragmented prey habitat. The
landscape is represented by a periodic square lattice in
which a fraction ρ∈ [0, 1] of the sites provide prey habitat.
To investigate how predator movement and the spatial distri-
bution of prey habitat jointly determine predator–prey
population dynamics, we fix the fraction of prey habitat ρ
and vary only the statistical properties of the patch sizes. In
other words, we focus on the spatial configuration of habitat
(fragmentation per se) and do not consider the potential
effects of habitat loss. The degree of fragmentation is deter-
mined by the spatial correlations in the distribution of prey
habitat. In our model, these are controlled by the Hurst expo-
nent H∈ (0, 1). In general, the limit H→ 1 defines low habitat
fragmentation, whereas H→ 0 defines highly fragmented
landscapes (figure 1; see the electronic supplementary
material for more details).

We assume that individual prey are sessile, can only
occupy habitat patches and cannot survive in the matrix. At
each time step, they reproduce with probability σ and can
potentially die by encountering a predator. We assume
that predators are, by contrast, highly motile and perform
Lévy walks in which the dispersal length ℓ follows a discrete
power-law distribution p(ℓ)∝ ℓ−α with exponent 1 < α≤ 3.
For α≥ 3, predator movement converges to Brownian
motion whereas the limit α→ 1 recovers ballistic motion. In
contrast to Lévy flights (which were discussed in [37]), in
which relocations are instantaneous, Lévy walks represent
movement at constant velocity. Hence, in our model, individ-
ual predators move a fixed distance every time step (the unit
lattice spacing) and the duration of each relocation event is
proportional to the length of the displacement [19]. Predator
relocations can be interrupted by predator death or by an
encounter with prey or other predators. When a relocation
is interrupted, a new direction and dispersal length are
sampled and the predator resumes its movement in the
next time step.

For predator–prey encounters, we consider that, when
predators cross a site occupied by prey, the probability that
they interact L̂ decays with the current dispersal length, i.e.
L̂ ¼ ‘�1. This assumption models intermittent search
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behaviour [25], which combines phases of non-reactive long,
straight displacements with reactive phases featuring shorter
displacements and more frequent turns [40–42]. In each pred-
ator–prey encounter event, prey is consumed and replaced
with a new predator with probability λ (predator reproduc-
tion probability) and with the focal predator otherwise (no
predator reproduction); see the electronic supplementary
material for further details on the parameters and the
model implementation.
0.2

0.1

0

(b)

1.0 1.5 2.0 2.5 3.0

a

M

H      1
H = 0.50
H = 0.20
H = 0.10
H = 0.01

Figure 2. Effect of the Lévy exponent α on population densities for different
Hurst exponents H. Other rate parameters are μ = 1/L, σ = 0.1 and l̂ ¼ 0:1
(electronic supplementary material). (a) Predator density N. The dashed
vertical line shows the optimal Lévy exponent a�

H!1 � 1:2 for H→ 1
and indicates predator extinction if predators cannot rapidly adapt to signifi-
cant increases in fragmentation (see text). (inset) Relative predator densities
Nrel = NH/NH→1 displays decreases in N when predators forage with the same
α in landscapes with higher fragmentation. Note that for some ranges of α
there exists a preferred intermediate spatial correlation H (see text). (b) Prey
density M declines as predators are less dispersive (higher α) regardless of
the degree of fragmentation.
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3. Results
We simulate the predator–prey model on a square lattice of
lateral length L = 512, with prey habitat density ρ = 0.2 and
different levels of fragmentation 0 <H < 1. We choose ρ con-
sidering that fragmentation impacts landscape properties
more strongly when the habitat is not abundant (e.g.
[1,43,44]; see the electronic supplementary material for
more details) and that Lévy foraging maximizes prey intake
only for low prey habitat density (e.g. [26]). We define the
spatially averaged predator and prey densities, N and M,
respectively, and initialize our simulations with M0 =N0 = ρ.
Predators are distributed randomly on the matrix and prey
individuals fully occupy the habitat patches. Measurements
of species densities were taken when the system converged
to a quasi-stationary stable state after T = 104 Monte Carlo
time steps (electronic supplementary material, figure SI.4).
Results in this quasi-stationary stable state did not depend
on the specific initial condition chosen for the simulations.

We are interested in investigating the impact of fragmen-
tation in fragile ecosystems (see [37]). That is, systems that are
already close to an extinction threshold when habitat patches
are large (H→ 1). Hence, we parameterize demographic rates
such that they bring the predator–prey dynamics close to an
extinction transition ([37]; see the electronic supplementary
material) and consider fragmentation, defined by the Hurst
exponent H, and predator dispersal, defined by the Lévy
exponent α, as the only free model parameters. Using this
simulation set-up, we study the impact of habitat structure
and predator dispersal on population dynamics, ecosystem
stability and patterns of irreversible habitat loss.

3.1. Population densities and species richness
We measure population sizes in the quasi-stationary stable
state for different degrees of habitat fragmentation and
foraging strategies. Since the prey reproduction rate is fixed
in our simulations, equilibrium population sizes are deter-
mined by predator–prey encounter rates and predator
reproduction rates. The long-time prey population density,
M, decreases monotonically as predator movement goes
from ballistic to Brownian (figure 2b). Predator density N,
however, is maximal for an intermediate value of the Lévy
exponent and its optimal value depends on the degree
of fragmentation (figure 2a). For each degree of fragmentation
H, we distinguish three different regimes in population
dynamics that result in different outcomes for the predator–
prey interaction (electronic supplementary material,
figure SI.4).

First, owing to our choice for the predator–prey inter-
action probability L̂ ¼ ‘�1, ballistic predators (α→ 1) rarely
consume prey and thus go extinct. Upon predator extinction,
prey proliferate until they reach their maximum population
size. Note, however, that this population size does not corre-
spond with the prey habitat density ρ in fragmented
landscapes because small habitat patches become irreversibly
uninhabited (see below).

Second, in the Brownian limit, α→ 3, predation is intense
and prey are overexploited regardless of the level of land-
scape fragmentation. Interestingly, Brownian-like dispersal
effectively induces area-restricted (or area-concentrated)
search patterns [45,46], as only those foragers that initially
spawn near a fragment have the opportunity to reproduce
(see the electronic supplementary material for more details).
This cross-generational patch fidelity results in prey extinc-
tion followed by predator extinction because of a lack of
prey. Note that predator extinctions are asymptotic as a
result of our choice of the predator death rate and we still
observe a few individuals in our simulations when they are
stopped (electronic supplementary material).

Third, for intermediate values of the Lévy exponent, our
model predicts stable species coexistence at different popu-
lation sizes that are jointly determined by predator
movement, α, and habitat fragmentation, H. For landscapes
that display little fragmentation (H→ 1), habitat patches are
large and predator relocations intersect with prey often. As
a result, predation still occurs during the non-reactive
phases—represented by long displacements—and predators
maximize population densities with near-ballistic foraging
for α≈ 1.2. In contrast, for highly fragmented landscapes
(H = 0.01), the model trade-off between displacement length
and prey detection probability becomes more important
because predator–prey encounters are more rare. It is thus
more critical that predators adopt strategies that increase



N

H

M

0.1

0

0.1

0
0 0.2 0.4 0.6 0.8 1.0

(a)

(b)

a = 1.5 a = 2.0
a = 2.3
a = 2.5

a = 1.8
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Figure 4. Influence of the Lévy exponent α on the probability of patch
depletion, Pd, as a function of patch size x for an intermediate degree of frag-
mentation with H = 0.5. Dotted vertical lines indicate minimum patch sizes at
x = 1 (single site). The dashed vertical line indicates the maximum patch size for
this particular level of fragmentation and patches with x > xmax do not exist;
hence, Pd(x > xmax) = 0. All other parameters are as in figure 2. Lines are a
guide to the eye, and the red curve displays Pd for the Lévy exponent that maxi-
mizes species richness (α = 1.2; see figure 6, inset). Note that less diffusive
foraging strategies (small α) result in less depletion as ρeff remains high.
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predation rates while ensuring sufficient encounters with
prey. This balance is attained when short displacements are
more frequently interspersed with long-range relocations,
leading to maximum predator population sizes for α≈ 1.6.

We also find that the range of foraging strategies, i.e.
values of α, that ensure predator survival becomes more
narrow as habitat fragmentation increases (figure 2a, inset).
This result suggests a stronger selective pressure on the fora-
ging strategy in highly fragmented landscapes. Moreover, our
results further indicate that foraging strategies that maximize
predator population sizes in slightly fragmented landscapes
(a�

H!1) lead to predator extinction as fragmentation increases
(figure 2a), suggesting a large impact of fragmentation on
foraging strategies that result in stable coexistence in
weakly fragmented landscapes.

In the intermediate α regime, our model suggests that
habitat fragmentation does not necessarily affect population
densities negatively. Predator populations with α < 2 display
maximal densities for intermediate values of H (figure 3a),
although densities do not decrease significantly when frag-
mentation decreases (H increases). Prey populations can
benefit from high levels of fragmentation when predator
movement approaches the ballistic regime, approximately
for α≤ 2 (figure 3b). This benefit results from ballistic preda-
tors rarely interacting with prey, which allows prey to avoid
predation by taking advantage of fragmentation and spread-
ing thinly. This aligns with established results obtained for
predators performing area-restricted searches [45,47–49].
Such predators exert pressure on prey species to live well
spaced out, and our results indicate that this is also true
when predators are Lévy searchers. In our model, however,
because prey are sessile and cannot space out during the
predator–prey dynamics, they need to adopt such a spatial
configuration in the initial condition. Moreover, these spatial
distributions of prey are more prone to localized extinctions
owing to stronger demographic fluctuations in small prey
patches and to overpredation. This further inhibits the
effectiveness of area-restricted search under our model
assumptions, as both predator and prey tend to go extinct
(figures 2 and 3; electronic supplementary material).

Next, we determine ecosystem health using a weighted
species richness R that captures how numerous predator
and prey are relative to each other as well as the total popu-
lation size within the environment (electronic supplementary
material). We define the species richness as

R ¼ (1D� 1)(N þM), ð3:1Þ
where 1 � 1D � S is the entropy-based diversity index and
S = 2 is the total number of species in the system (see elec-
tronic supplementary material and, for example [50]). This
metric for species richness predominantly follows predator
density (electronic supplementary material, figure SI.5).
However, because of the effect of prey density, the predator
foraging strategy that maximizes species richness is consist-
ently more ballistic than that maximizing predator density
a�
R , a�

N (electronic supplementary material, figure SI.5).
This shift results from the decrease in predator–prey inter-
action rates L̂ when α decreases, which consequently
increases prey population size.
3.2. Fragmentation induces irreversible habitat loss
As mentioned above, predators may induce irreversible prey
habitat loss in fragmented landscapes because they overex-
ploit small patches that cannot be recolonized because prey
individuals are sessile. As a result, following predator extinc-
tion, prey population density does not converge to habitat
density ρ (figure 2a). To investigate this further, we measure
the patch depletion probability, Pd, as a function of patch size
and predator foraging strategy (see the electronic supplemen-
tary material). Our results indicate that small patches have a
higher depletion probability regardless of the predator fora-
ging strategy α (figure 4), because they host smaller prey
populations that are more likely to be exhausted and sub-
jected to stronger demographic fluctuations. The effect of α
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on the depletion probability is stronger for intermediate
patch sizes as higher values of α lead to more local predation
and, as a consequence, higher patch depletion probability
(figure 4). Importantly, significant patch depletion occurs
even when predators adopt foraging strategies that maximize
species richness (electronic supplementary material, figures
SI.6 and SI.7).

To further evaluate the impact of the patch depletion prob-
ability Pd on habitat loss, we define the effective habitat
density ρeff as the fraction of initial habitat ρ that remains avail-
able to prey in the quasi-stationary stable state (figure 5).
Ballistic foraging results in low levels of habitat loss, because
predators rapidly go extinct and only a few small patches
are depleted (figure 4). When α increases and short predator
displacements become more frequent, the depletion prob-
ability is higher for a broader range of patch sizes (compare,
for example, the curves for α = 1.1 and α = 1.5 in figure 4). As
a result, effective habitat density is amonotonically decreasing
function of the Lévy exponent and Brownian foragers mini-
mize the effective habitat density regardless of the level of
fragmentation (figure 5). However, how much habitat is lost
in already fragmented landscapes will depend on the level
of fragmentation. For example, Brownian foragers in slightly
fragmented landscapes (H→ 1) eliminate approximately 40%
of the initial habitat. In highly fragmented habitats, this per-
centage is approximately 90% and most of the prey–predator
dynamics occurs in the few (relatively) large patches that
remain available for prey.

Finally, we measure how habitat fragmentation affects
effective habitat loss for different foraging strategies, α. As
expected, ballistic predators minimize the effective habitat
loss because they minimize predation rates (figure 5). In con-
trast, Brownian predators maximize effective habitat loss
because they overexploit prey patches locally. Intermediate
values of α maximize the difference between effective habitat
loss at low and high fragmentation (figure 5b). For foraging
strategies that maximize species richness and predator den-
sities (figure 6), increased fragmentation may result in an
effective habitat loss of 40%. Importantly effective habitat
loss is a nonlinear function of the fragmentation level with
much faster decay when landscapes transition from slightly
to highly fragmented (figure 6a). Population sizes, however,
decay much more slowly in response to increased fragmenta-
tion (figure 6b), illustrating the importance of foraging
strategies in maintaining the stability of ecological commu-
nities in response to increased fragmentation and habitat loss.
4. Discussion
Our stochastic predator–prey model reveals that the interplay
between predator foraging behaviour and fragmentation
strongly influences species persistence, ecosystem stability
and prey habitat conservation (figure 7). Predator and prey
populations, and the resulting species richness, are maximal
for a specific predator foraging strategy α that depends
nonlinearly on the spatial correlation of habitat H. Moreover,
increased fragmentation reduces the range of possible
α values that result in stable species coexistence (figures 2
and 7), which suggests a stronger evolutionary pressure on
foraging strategies in highly fragmented environments. We
considered here power-law dispersal kernels to model preda-
tor foraging; however, similar results have been found for
predators exhibiting exponential dispersal kernels [51],
which further supports that dispersal is a critical component
of long-term ecosystem stability [13,52]. Moreover, as habitat
fragmentation increases, prey habitat consists of more and
smaller patches. Extinctions within these smaller patches
are more likely to be due to overpredation and stronger
demographic fluctuations, ultimately resulting in irreversible
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prey habitat loss. Our results suggest that optimal predator
responses can decrease, but not prevent or minimize, the
amount of lost habitat, and that this reduction is more pro-
nounced when habitat is highly fragmented. The possible
outcomes of our model for different predator foraging strat-
egies and habitat fragmentation are summarized in figure 7.

Effective habitat loss mainly results from small patches
becoming irreversibly depleted and only large patches
remaining inhabitable (figure 4). As a result, the effective
spatial correlation in the landscape increases, and prey frag-
mentation decreases, resulting in an effective H larger than
the one used to generate the habitat landscape. Assuming
that predators can rapidly respond to such a change in frag-
mentation, possible predator adaptations to this new habitat
configuration should result in predators foraging more ballis-
tically (lower α, figure 6, inset). Because habitat loss is less
severe for lower values of α (figure 5), such a response can
inhibit further habitat destruction. Hence, our results agree
with previous work that indicated that predator dispersal
can stabilize irreversible habitat loss and population declines
[37,51,53–56].

Our model predicts that higher dispersal rates, rep-
resented by lower values of α, tend to increase ecosystem
stability by allowing predators to exploit several prey
patches. We neglect, however, all types of dispersal costs
that could increase predator death rates when they travel
between prey patches [57]. Including such costs might be
especially relevant when studying the impact of fragmenta-
tion on species with low dispersal abilities, such as small
mammals [58] and amphibians [59] (but see [60]). Addition-
ally, we also make simplifying assumptions about the
landscape. More specifically, we considered a binary lattice
and globally fixed demographic rates. Instead, including
matrix and edge effects on both predator dispersal and
prey reproduction—e.g. by studying a non-binary, hetero-
geneous habitat matrix [61], movement responses to habitat
edges [62], etc.—might reveal potential (de)stabilizing effects
that we did not find in our analysis. Furthermore, we did not
consider interventions that increase landscape connectivity,
e.g. designing corridors to connect spatially separated frag-
ments allowing prey populations to repopulate previously
exhausted patches [63,64]. Finally, we omitted habitat hetero-
geneity in predator reproduction rates, e.g. when a different
habitat is needed for reproduction, such as aquatic breeding
grounds for terrestrial amphibians [65,66]. Future work
should incorporate these aspects and investigate their effects
on ecosystem stability.

We also did not investigate the possible responses of
the prey population to predation and habitat loss. In our
model, prey is sessile and can only diffuse as a result of repro-
duction onto adjacent sites. Therefore, their only response to
avoid local extinctions is to increase their reproduction rate σ.
Hence, environments that contain static prey that cannot
cross hard boundaries are subjected to an evolutionary
pressure that might favour prey species with higher repro-
duction rates [67,68].

We also neglected several features that might affect pred-
ator foraging behaviour, such as satiation [69], interactions
with conspecifics [70,71], spatial memory [72,73], long-
range perception [74,75] and complex patterns of adaptive
movement in response to prey encounters [22]. We further
considered a trade-off between displacement length and pre-
dation efficiency that biases selection against ballistic
movement. Although this choice is based on the existing lit-
erature on intermittent search [25], considering different
shapes for this trade-off might alter our results. All these fac-
tors can change the optimal foraging strategy in landscapes
with varying degrees of fragmentation and hence affect the
impact of fragmentation on ecosystem stability.

Finally, higher order interactions are known to stabilize
the population dynamics of multi-species systems [76–78]
and extinctions in one trophic level may destabilize species’
coexistence and cause extinctions higher up the trophic net-
work [79,80]. Extending our framework to describe multi-
species systems with more complex trophic interactions is
needed to understand how foraging behaviour and fragmen-
tation jointly determine ecosystem stability.

Our work displays the intricate interplay between fora-
ging behaviour and habitat fragmentation, and highlights
the role of dispersal on population persistence and ecosystem
stability in fragmented landscapes. It furthermore shows how
increased levels of fragmentation lead to higher irreversible
habitat loss and how optimal foraging responses can
reduce, but not prevent or minimize, the amount of lost habi-
tat. Owing to their profound ecological consequences, our
results suggest that future models of population dynamics
should explicitly include optimal foraging arguments when
discussing the potential effects of landscape fragmentation
on ecosystem stability.
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